| 研究生: |
傅鈺傑 Fu, Yu-Chieh |
|---|---|
| 論文名稱: |
摻碲在中空金屬有機骨架化合物ZIF-8@ZIF-67生成原位摻氮多孔碳骨架化合物以大幅提升水合鋅電池電性之應用 Te-doped ZIF-8@ZIF-67 derived Nitrogen-Doped Porous Carbon as a high performance anode for aqueous zinc batteries |
| 指導教授: |
陳雨澤
Chen, Yu-Ze |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 水合鋅電池 、碲 、金屬有機骨架化合物 、陽極 、ZIF-8@ZIF-67 |
| 外文關鍵詞: | aqueous zinc-ion batteries, metal organic framework, Tellurium, anode, SEI |
| 相關次數: | 點閱:78 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鋰資源日益減少,因此對於成本較低的鉀、鈉等電池的研究逐漸增加,已經成為令人矚目的新興儲能系統。然而,鉀、鈉電池也有著顯著的致命缺點,如其較大的離子半徑以及它高製造的成本,最為嚴重的即是它劇毒且易燃的電解質需求。因此,水系電池在近幾年躍升於檯面,尤其水合鋅電池,它有著製造成本便宜,高安全性,簡易的組裝環境需求,液相的高離子導電能力以及高達820mAhg-1的理論容量,成為近期熱門研究的對象。
然而,水合鋅電池也有著許多致命的缺點,例如1.其循環期間產生的枝晶現象,不僅會因此產生絕緣且不提供電容量的死鋅,甚至隨著逐漸生長進而刺穿隔離膜造成內部短路2.反應期間氫的產生3.由於浸泡於弱酸性電解質而造成的鋅陽極腐蝕,因此在解決上述問題一直是目前廣大的研究重點。
因此,本研究藉由碳化後的耐緩衝的殼核結構、表面積大、孔隙率高以及可控制的結構等優點的ZIF-8@ZIF-67金屬有機骨架化合物(MOFs),再以摻雜高體積能量密度以及高導電能力的類金屬碲(Te)形成ZIF-8@ZIF-67@Te複合物塗附在鋅陽極表面上,藉此大幅改善原本水合鋅電池裸露陽極枝晶現象等諸多問題,並有效達成高電容量、優秀的倍率性能以及超長循環性能的表現。
Rechargeable aqueous zinc-ion batteries (AZIBs) gradually began to be valued and become an excellent candidate for the next-generation batteries. However, AZIBs still faced a variety of challenges, the most important issue is the rough surface about bare Zn foil anode, it will be resulting in uneven charge distribution and leads to the dendrite growth, eventually caused the battery short circuit and low cycle life. Thus, we design an artificial solid electrolyte interphase(SEI) film coated on Zn foil to retard the dendrite phenomenon with carbonized metal organic framework (MOFs),ZIF-8@ZIF-67/NC, and doped transition metal dichalcogenides ‘Tellurium’ to improve the conductivity about the material with solvent method, as we known, this is the first time doped tellurium in MOFs with solvent method because of the it’s high melting point. Benefiting from the ZIF-8@ZIF-67@Te/NC layer, Zn@ ZIF-8@ZIF-67/NC // MnO2 aqueous zinc-ion batteries shows the high specific capacity(740 mAh/g), rate performance(10A/g, 214 mAh/g),ultra-long cycle life (3200 cycle). Thus, we successfully synthesized a great artificial SEI layer to inhibited dendrite phenomenon and increased it’s specific capacity.
[1] Hieu, L. T.; So, S.; Kim, I. T.; Hur, J., Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem. Eng. J.,411, 128584,2021.
[2] Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y., Reversible Zinc-Based Anodes Enabled by Zincophilic Antimony Engineered MXene for Stable and Dendrite-Free Aqueous Zinc Batteries. Energy Storage Mater, 343-353, 2021.
[3] Bhoyate, S.; Mhin, S.; Jeon, J.-e.; Park, K.; Kim, J.; Choi, W., Stable and high-energy-density Zn-ion rechargeable batteries based on a MoS2-coated Zn anode. ACS Appl. Mater. Interfaces 12 (24), 27249-27257,2020.
[4] Cao, P.; Zhou, X.; Wei, A.; Meng, Q.; Ye, H.; Liu, W.; Tang, J.; Yang, J., Fast‐Charging and Ultrahigh‐Capacity Zinc Metal Anode for High‐Performance Aqueous Zinc‐Ion Batteries. Adv Funct Mater 31 (20), 2100398,2021.
[5] Li, B.; Xue, J.; Lv, X.; Zhang, R.; Ma, K.; Wu, X.; Dai, L.; Wang, L.; He, Z., A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode. Surf Coat Tech, 127367,2021.
[6] Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long‐life zinc rechargeable aqueous batteries. Adv Energy Mater 8 (25), 1801090,2018.
[7] Wang, Y.; Chen, Y.; Liu, W.; Ni, X.; Qing, P.; Zhao, Q.; Wei, W.; Ji, X.; Ma, J.; Chen, L., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J Mater Chem A 9 (13), 8452-8461,2021.
[8] Zhang, Y.; Wang, G.; Yu, F.; Xu, G.; Li, Z.; Zhu, M.; Yue, Z.; Wu, M.; Liu, H.-K.; Dou, S.-X., Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem Eng J 416, 128062,2021.
[9] Wang, X.; Wang, Y.; Jiang, Y.; Li, X.; Liu, Y.; Xiao, H.; Ma, Y.; Huang, Y. y.; Yuan, G., Tailoring Ultrahigh Energy Density and Stable Dendrite‐Free Flexible Anode with Ti3C2Tx MXene Nanosheets and Hydrated Ammonium Vanadate Nanobelts for Aqueous Rocking‐Chair Zinc Ion Batteries. Adv Func Mater, 2103210,2021.
[10] Li, X.; Li, D.; Zhang, Y.; Lv, P.; Feng, Q.; Wei, Q., Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy 68, 104308,2020.
[11] Wan, L.; Liu, H.; Huang, C.; Shen, X., Enzyme-like MOFs: synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. J Mater Chem A 8 (48), 25931-25940,2020.
[12] Schulte, Z. M.; Kwon, Y. H.; Han, Y.; Liu, C.; Li, L.; Yang, Y.; Jarvi, A. G.; Saxena, S.; Veser, G.; Johnson, J. K., H2/CO2 separations in multicomponent metal-adeninate MOFs with multiple chemically distinct pore environments. Chem Sci 11 (47), 12807-12815,2020.
[13] Melag, L.; Sadiq, M. M.; Konstas, K.; Zadehahmadi, F.; Suzuki, K.; Hill, M. R., Performance evaluation of CuBTC composites for room temperature oxygen storage. RSC Adv 10 (67), 40960-40968,2020.
[14] Yuksel, R.; Buyukcakir, O.; Panda, P. K.; Lee, S. H.; Jiang, Y.; Singh, D.; Hansen, S.; Adelung, R.; Mishra, Y. K.; Ahuja, R., Necklace‐like Nitrogen‐Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Adv Func Mater 30 (10), 1909725,2020.
[15] Sai, T.; Ran, S.; Guo, Z.; Yan, H.; Zhang, Y.; Song, P.; Zhang, T.; Wang, H.; Fang, Z., Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate. Composites B: Engineering 197, 108064,2020.
[16] Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 378 (6558), 703-706,1995.
[17] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402 (6759), 276-279,1999.
[18] Shi, X.; Lin, X.; Liu, S.; Li, A.; Chen, X.; Zhou, J.; Ma, Z.; Song, H., Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries. Chem Eng J 372, 269-276,2019.
[19] Yang, T.; Liu, Y.; Huang, Z.; Liu, J.; Bian, P.; Ling, C. D.; Liu, H.; Wang, G.; Zheng, R., In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. J Alloy Compd 735, 1079-1087,2018.
[20] Jeon, Y.; Lee, J.; Jo, H.; Hong, H.; Lee, L. Y. S.; Piao, Y., Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO Core-shell template as a sulfur host for Li-S batteries. Chem Eng J 407, 126967,2021.
[21] Zhang, P.; Guan, B. Y.; Yu, L.; Lou, X. W., Formation of Double‐Shelled Zinc–Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors. Angew Chem Int Edit 56 (25), 7141-7145,2017.
[22] Zhang, J.; Zhang, T.; Xiao, K.; Cheng, S.; Qian, G.; Wang, Y.; Feng, Y., Novel and facile strategy for controllable synthesis of multilayered core–shell zeolitic imidazolate frameworks. Cryst Grow Des 16 (11), 6494-6498,2016.
[23] Huang, Z.; Fan, L.; Zhao, F.; Chen, B.; Xu, K.; Zhou, S. F.; Zhang, J.; Li, Q.; Hua, D.; Zhan, G., Rational Engineering of Multilayered Co3O4/ZnO Nanocatalysts through Chemical Transformations from Matryoshka‐Type ZIFs. Adv Funct Mater 29 (42), 1903774,2019.
[24] Cravillon, J.; Münzer, S.; Lohmeier, S.-J.; Feldhoff, A.; Huber, K.; Wiebcke, M., Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21 (8), 1410-1412,2009.
[25] Lu, S.; Hummel, M.; Chen, K.; Zhou, Y.; Kang, S.; Gu, Z., Synthesis of Au@ ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem Commun 114, 106715,2020.
[26] Qian, J.; Sun, F.; Qin, L., Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82, 220-223,2012.
[27] Ding, N.; Chen, S. F.; Geng, D. S.; Chien, S. W.; An, T.; Hor, T. A.; Liu, Z. L.; Yu, S. H.; Zong, Y., Tellurium@ Ordered Macroporous Carbon Composite and Free‐Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium–Tellurium Batteries. Adv Energy Mater 5 (8), 1401999,2015.
[28] Abouimrane, A.; Dambournet, D.; Chapman, K. W.; Chupas, P. J.; Weng, W.; Amine, K., A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J Am chem soc 134 (10), 4505-4508,2012.
[29] Huang, G.; Li, Q.; Yin, D.; Wang, L., Hierarchical Porous Te@ ZnCo2O4 Nanofibers Derived from Te@ Metal‐Organic Frameworks for Superior Lithium Storage Capability. Adv Funct Mater 27 (5), 1604941,2017.
[30] Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B.; Zhang, Q.; Titirici, M. M.; Wei, F., Topological defects in metal‐free nanocarbon for oxygen electrocatalysis. Adv mater 28 (32), 6845-6851,2016.
[31] Liu, Y.; Shen, Y.; Sun, L.; Li, J.; Liu, C.; Ren, W.; Li, F.; Gao, L.; Chen, J.; Liu, F., Elemental superdoping of graphene and carbon nanotubes. Nat commun 7 (1), 1-9,2016.
[32] Zhang, J.; Huang, M.; Xi, B.; Mi, K.; Yuan, A.; Xiong, S., Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium–sulfur batteries. Adv Energy Mater 8 (2), 1701330,2018.
[33] Tang, Z.-H.; Xie, J.-F.; Bian, Z.-X.; Zhang, J.-H.; Liu, Y.-J.; Guo, X.-M.; Kong, Q.-H.; Yuan, A.-H., Fabrication of Si Nanoparticles Encapsulated into Porous N-Doped Carbon for Superior Lithium Storage Performances. J nanosci nanotechno 20 (2), 949-956,2020.
[34] Ma, C.; Shao, X.; Cao, D., Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem A 22 (18), 8911-8915,2012.
[35] Zhou, X.; Chen, L.; Zhang, W.; Wang, J.; Liu, Z.; Zeng, S.; Xu, R.; Wu, Y.; Ye, S.; Feng, Y., Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano lett 19 (8), 4965-4973,2019.
[36] Fan, M.; Lin, Z.; Zhang, P.; Ma, X.; Wu, K.; Liu, M.; Xiong, X., Synergistic Effect of Nitrogen and Sulfur Dual‐Doping Endows TiO2 with Exceptional Sodium Storage Performance. Adv Energy Mater 11 (6), 2003037,2021.
[37] Cai, D.; Liu, B.; Zhu, D.; Chen, D.; Lu, M.; Cao, J.; Wang, Y.; Huang, W.; Shao, Y.; Tu, H., Ultrafine Co3Se4 Nanoparticles in Nitrogen‐Doped 3D Carbon Matrix for High‐Stable and Long‐Cycle‐Life Lithium Sulfur Batteries. Adv Energy Mater 10 (19), 1904273,2020.
[38] Chen, D.; Zhu, J.; Mu, X.; Cheng, R.; Li, W.; Liu, S.; Pu, Z.; Lin, C.; Mu, S., Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl Catal B-Environ 268, 118729,2020.
[39] Shoji, T.; Hishinuma, M.; Yamamoto, T., Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell. J appl electrochem 18 (4), 521-526,1988.
[40] Konarov, A.; Voronina, N.; Jo, J. H.; Bakenov, Z.; Sun, Y.-K.; Myung, S.-T., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett 3 (10), 2620-2640,2018.
[41] Chen, D.; Lu, M.; Cai, D.; Yang, H.; Han, W., Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J Energy Chem,2020.
[42] Tan, Q.; Li, X.; Zhang, B.; Chen, X.; Tian, Y.; Wan, H.; Zhang, L.; Miao, L.; Wang, C.; Gan, Y., Valence Engineering via In Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra‐Long Cycle Life Aqueous Zn‐Ion Battery. Adv Energy Mater 10 (38), 2001050,2020.
[43] Long, J.; Yang, Z.; Yang, F.; Cuan, J.; Wu, J., Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochim Acta 344, 136155,2020.
[44] Tang, H.; Peng, Z.; Wu, L.; Xiong, F.; Pei, C.; An, Q.; Mai, L., Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities. Electrochem Energy R 1 (2), 169-199,2018.
[45] Wang, X.; Li, Y.; Das, P.; Zheng, S.; Zhou, F.; Wu, Z.-S., Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater 31, 156-163,2020.
[46] Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q., Electrochemically Induced Metal-Organic-Framework-Derived Amorphous V(2)O(5)for Superior Rate Aqueous Zinc-Ion Batteries. Angew. Chem.-Int. Edit. 59 (49), 22002-22006,2020.
[47] Tang, B.; Shan, L.; Liang, S.; Zhou, J., Issues and opportunities facing aqueous zinc-ion batteries. Energ Environ Sci 12 (11), 3288-3304,2019.
[48] Zhou, W.; Chen, M.; Wang, A.; Huang, A.; Chen, J.; Xu, X.; Wong, C.-P., Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. J Energy Chem 52, 377-384,2021.
[49] Zhou, J.; Shan, L. T.; Wu, Z. X.; Guo, X.; Fang, G. Z.; Liang, S. Q., Investigation of V₂O as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54 (35), 4457-4460,2018.
[50] Zou, P.; Wang, Y.; Chiang, S.-W.; Wang, X.; Kang, F.; Yang, C., Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat commun 9 (1), 1-9,2018.
[51] Yang, Q.; Liang, G.; Guo, Y.; Liu, Z.; Yan, B.; Wang, D.; Huang, Z.; Li, X.; Fan, J.; Zhi, C., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in‐service batteries. Adv mater 31 (43), 1903778,2019.
[52] Pu, X.; Jiang, B.; Wang, X.; Liu, W.; Dong, L.; Kang, F.; Xu, C., High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Lett 12 (1), 1-15,2020.
[53] Liu, M.; Cai, J.; Ao, H.; Hou, Z.; Zhu, Y.; Qian, Y., NaTi2 (PO4) 3 Solid‐State Electrolyte Protection Layer on Zn Metal Anode for Superior Long‐Life Aqueous Zinc‐Ion Batteries. Adv Funct Mater 30 (50), 2004885,2020.
[54] Wang, Z.; Huang, J.; Guo, Z.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3 (5), 1289-1300,2019.
[55] Yuksel, R.; Buyukcakir, O.; Seong, W. K.; Ruoff, R. S., Metal‐organic framework integrated anodes for aqueous zinc‐ion batteries. Adv Energy Mater 10 (16), 1904215,2020.
[56] Liu, C.; Li, Q.; Sun, H.; Wang, Z.; Gong, W.; Cong, S.; Yao, Y.; Zhao, Z., MOF-derived vertically stacked Mn2O3@ C flakes for fiber-shaped zinc-ion batteries. J Mater Chem A 8 (45), 24031-24039,2020.
[57] Deng, S.; Yuan, Z.; Tie, Z.; Wang, C.; Song, L.; Niu, Z., Electrochemically Induced Metal–Organic‐Framework‐Derived Amorphous V2O5 for Superior Rate Aqueous Zinc‐Ion Batteries. Angew Chem Int Edit 59 (49), 22002-22006,2020.
[58] He, H.; Tong, H.; Song, X.; Song, X.; Liu, J., Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J Mater Chem A 8 (16), 7836-7846,2020.
[59] Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z., Direct Self‐Assembly of MXene on Zn Anodes for Dendrite‐Free Aqueous Zinc‐Ion Batteries. Angew Chem Int Edit,2020.
[60] Yang, Y.; Liu, C.; Lv, Z.; Yang, H.; Zhang, Y.; Ye, M.; Chen, L.; Zhao, J.; Li, C. C., Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long‐Lifespan and Dendrite‐Free Zn Metal Anodes. Adv Mater 33 (11), 2007388,2021.
[61] Yang, H.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X.; He, P.; Zhou, H., Constructing a super‐saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew Chem Int Edit 59 (24), 9377-9381,2020.
[62] Ma, H.; Tian, X.; Wang, T.; Tang, K.; Liu, Z.; Hou, S.; Jin, H.; Cao, G., Tailoring Pore Structures of 3D Printed Cellular High‐Loading Cathodes for Advanced Rechargeable Zinc‐Ion Batteries. Small, 2100746,2021.
[63] Kim, S.; Koo, B.-R.; Jo, Y.-R.; An, H.-R.; Lee, Y.-G.; Huang, C.; An, G.-H., Defect engineering via the F-doping of β-MnO2 cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries. J Mater Chem A,2021.
[64] Wang, X.; Zhang, Z.; Xiong, S.; Tian, F.; Feng, Z.; Jia, Y.; Feng, J.; Xi, B., A High‐Rate and Ultrastable Aqueous Zinc‐Ion Battery with a Novel MgV2O6· 1.7 H2O Nanobelt Cathode. Small 17 (20), 2100318,2021.
[65] Xu, D.; Zhang, H.; Cao, Z.; Wang, L.; Ye, Z.; Chen, B.; Li, X.; Zhu, X.; Ye, M.; Shen, J., High-rate aqueous zinc-ion batteries enabled by a polymer/graphene composite cathode involving reversible electrolyte anion doping/dedoping. J Mater Chem A 9 (17), 10666-10671,2021.
[66] Zhu, X.; Cao, Z.; Wang, W.; Li, H.; Dong, J.; Gao, S.; Xu, D.; Li, L.; Shen, J.; Ye, M., Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene. ACS nano 15 (2), 2971-2983,2021.