簡易檢索 / 詳目顯示

研究生: 黃敬捷
Huang, Ching-Chieh
論文名稱: 石墨烯擔體之表面性質與觸媒之熱處理於氫能燃料電池性能之影響
Influences of Surface Properties of Graphene Supports and Thermal Treatment of Catalysts on the Proton Exchange Membrane Fuel Cell Performance
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 79
中文關鍵詞: 氫能燃料電池石墨烯鉑/還原態氧化石墨烯觸媒氧氣還原反應
外文關鍵詞: Proton exchange membrane fuel cell, graphene, Pt/reduced graphene oxide, oxygen reduction reaction
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子交換膜燃料池是備受矚目的發電裝置。當燃料為氫氣即稱為氫能燃料電池,可將氫氣和氧氣的化學能轉換成電能,不僅發電效率高且低汙染,因此已是重要的替代能源。為了降低燃料電池系統實際操作時的成本及電壓損失,研發高活性的觸媒乃當務課題。目前,碳黑擔載鉑觸媒 (carbon black supported platinum, Pt/C) 是最常見的燃料電池觸媒,不過,近幾年石墨烯廣受熱議,其獨特的結構與特性,使其可望取代碳黑成為更優良的觸媒擔體材料。
    本論文旨在探討石墨烯的表面性質對氫能燃料電池觸媒的影響,並藉由高溫處理,改變金屬觸媒與擔體的特性,以提升其催化活性。另外,亦比較單金屬觸媒 (鉑) 與雙金屬觸媒 (鉑和鈷) 的表現。本研究中使用三種市售石墨烯作為擔體材料:石墨烯奈米薄片(graphene nanosheet, GNS)、氧化石墨烯一號和二號 (graphene oxide: GO1, GO2)。三者的主要差異為其表面的碳與氧比率 (C : O ratio)。於本論文中所有的石墨烯擔載金屬觸媒皆是以乙二醇還原法進行合成。氧化石墨烯部份形成還原態 (reduced graphene oxide, rGO),製得之觸媒係以Pt/GNS、Pt/rGO1和Pt/rGO2命名,其中,對Pt/rGO2 之熱處理,是改變加熱溫度和時間而觀察觸媒的物性及催化活性之變化。以同樣方法製備的鉑鈷雙金屬觸媒 (PtCo/rGO2),也與前述的單金屬觸媒 (Pt/rGO2) 相互比較。
    擔體與觸媒的型態是以穿透式電子顯微鏡 (TEM) 進行觀察;晶體結構與晶粒尺寸可由X射線繞射分析儀 (XRD) 得知。此外,擔體、雙金屬觸媒以及 Pt/rGO2 觸媒經熱處理後各者不同表面元素組成比例的變化是以掃描電子顯微鏡及能量分散光譜儀 (SEM/ EDS) 與X射線光電子能譜儀 (XPS) 進行分析。石墨烯的缺陷與分子結構則使用拉曼光譜儀 (Raman spectroscope) 和傅立葉轉換紅外光譜 (FTIR) 進行鑑定。
    對觸媒之電化學活性面積及催化氧氣還原反應能力之比較是以循環伏安法和線性掃描法進行計算與比較。文中探討的自製觸媒有單金屬觸媒:Pt/GNS、Pt/rGO1、Pt/rGO2,以及對應的鉑鈷雙金屬觸媒。此外,亦探究觸媒經熱處理後的電化學活性表現。繼之,將自製的觸媒應用於氫燃料電池之效能測試,乃是更換陰極觸媒的種類,但固定陽極觸媒為Pt/rGO2,其中以Pt/GNS為陰極觸媒時,電池性能表現最優:開環電壓為 0.982 V,最高能量密度是125 mW cm-2。Pt/rGO1和Pt/rGO2 的電池性能表現相近,但都不及Pt/GNS;且Pt/rGO2經高溫處理後,最高電能密度可獲提升。此外,以雙金屬觸媒作為陰極觸媒時的電池性能則不如單金屬觸媒。
    綜合上述,於本研究中製得的金屬觸媒確實可於氫能燃料電池系統使用並展現放電效率,顯示具有實際應用的潛力。不過,未來仍須更進階的研究,以強化燃料電池整體的性能表現。

    The proton exchange membrane fuel cell (PEMFC) is considered to be one of the most promising energy sources because of its high energy conversion efficiency and low pollutant emission. However, high cost, sluggish oxygen reduction reaction and low durability are major defects that hamper PEMFCs commercialization. The key solution to the problems lies in catalyst materials. Pt nanoparticles supported on carbon black (Pt/C) are the most common catalysts, yet their properties are not fairly satisfactory. Thus, an emerging material – graphene – draws extensive attention on account of its unique structure and characteristics.
    In this thesis, three different graphenes with varied surface oxygen functional groups concentration are used as the fuel cell catalyst supporting materials. Pt nanoparticles deposited on the supports are prepared by ethyl glycol reduction method. Reduced graphene oxides are also formed from the reduction process. The oxygen content of the graphene supports and the pre-heating treatment on the supports essentially affect the performance of the fuel cell system. Evaluation on the fuel cells are scrutinized with spectroscopic, microscopic and electrochemical analyses. The results show that the Pt nanoparticles supported on the graphene, which contains the least oxygen functionalities, exhibit the highest electrochemical surface area, highest oxygen reduction reaction activity and superior single-cell performance. Consequently, a maximum power density of 125 mW cm-2 and an open-circuit potential of 0.982 V are achieved. Also, it is observed that the pre-heating treatment causes significant structural and morphological modification of the catalysts leading to an enhancement in catalytic activity. In addition, Pt-Co bimetallic catalysts are also synthesized and compared to the monometallic ones.
    In summary, the prepared catalysts are utilizable in PEMFCs and shows moderate efficiency, which implies they possess the potential of practical implementation. Nevertheless, further investigation is required in order to improve the overall cell performance.

    中文摘要 I Extended Abstract III 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 1 1.3 質子交換膜燃料電池 2 1.3.1 工作原理 2 1.3.2 構造及元件 3 1.4 研究動機與目的 6 第二章 文獻回顧 7 2.1 觸媒材料 7 2.1.1 陽極觸媒 7 2.1.2 陰極觸媒 9 2.1.3 鉑基雙金屬觸媒 11 2.1.4 擔體 13 2.1.5 石墨烯 (Graphene) 14 2.2 觸媒之製備 16 第三章 實驗方法與材料 20 3.1 單金屬觸媒之合成 20 3.2 雙金屬觸媒之合成 20 3.3 觸媒之熱處理 20 3.4 電化學特性分析 21 3.4.1 工作電極製作 21 3.4.2 循環伏安法 (Cyclic Voltammetry) 22 3.4.3 線性掃描法 23 3.5 膜電極組之製作 25 3.5.1 Nafion® 膜之前處理 25 3.5.2 氣體擴散電極之製備 26 3.5.3 膜電極組之組合 26 3.6 單電池之性能測試 26 3.6.1 單電池之組裝 26 3.6.2 極化曲線 27 3.7 物性分析 28 3.7.1掃描電子顯微鏡附加能量分散光譜儀 (Scanning Electron Microscopy/Energy Dispersive X-Ray, SEM/EDX) 28 3.7.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 29 3.7.3 傅立葉轉換紅外光譜 (Fourier transform infrared spectroscopy, FTIR) 29 3.7.4 X射線繞射分析 (X-Ray diffraction, XRD) 29 3.7.5 拉曼光譜 (Raman spectroscopy) 31 3.7.6 X射線光電子能譜 (X-ray photoelectron spectroscopy, XPS) 31 3.8 藥品與材料 32 3.9 儀器設備 33 第四章 結果與討論 35 4.1 擔體與觸媒之物性分析 35 4.1.1 傅立葉光譜 35 4.1.2 拉曼光譜 36 4.1.3 掃描電子顯微鏡附加能量分散光譜儀 (SEM/EDS) 37 4.1.4 X射線光電子能譜 (XPS) 45 4.1.5 X射線繞射分析圖譜圖譜 (XRD) 50 4.1.6 TEM 結果 55 4.2 觸媒之電化學活性面積 60 4.2.1 石墨烯擔體種類之影響 60 4.2.2 觸媒熱處理之影響 60 4.2.3 雙金屬觸媒與單金屬觸媒的比較 61 4.3 觸媒催化氧氣還原反應之活性 64 4.3.1 石墨烯擔體種類之影響 64 4.3.2 觸媒熱處理之影響 64 4.3.3 雙金屬觸媒與單金屬觸媒的比較 64 4.4 單電池性能測試 66 4.4.1 觸媒擔體之影響 66 4.4.2 觸媒熱處理之影響 66 4.4.3 雙金屬觸媒與單金屬觸媒的比較 67 4.4.4 氣體擴散電極製備方法之影響 67 第五章 結論 72 參考文獻 74

    1. J. Zhang, PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, Springer (2008)
    2. U.S. Department of Energy Efficiency & Renewable Energy, Comparison of fuel cell technologies, (2011) www.eere.energy.gov/informationcenter
    3. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. I. Kimijima and N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chemical Reviews 107 (2007) 3904-3951
    4. G.-E. Technologies, Proton exchange membrane fuel Cell (PEMFC), (2012) http://www.g-energy.com.my/fuel_cell_tech_PEMFC.html
    5. X. Li and I. Sabir, Review of bipolar plates in PEM fuel cells: flow-field designs, International Journal of Hydrogen Energy 30 (2005) 359-371
    6. H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah and A. Mazza, A review of water flooding issues in the proton exchange membrane fuel cell, Journal of Power Sources 178 (2008) 103-117
    7. A. Arvay, E. Yli-Rantala, C. H. Liu, X. H. Peng, P. Koski, L. Cindrella, P. Kauranen, P. M. Wilde and A. M. Kannan, Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells – A review, Journal of Power Sources 213 (2012) 317-337
    8. M. Uchida, Y. C. Park, K. Kakinuma, H. Yano, D. A. Tryk, T. Kamino, H. Uchida and M. Watanabe, Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells, Phys Chem Chem Phys 15 (2013) 11236-11247
    9. Ion Power, Nafion® Molecule, (2013) http://www.ion-power.com/
    10. J. Spendelow and J. Marcinkoski, Fuel cell system cost (2013)
    11. H. A. Gasteiger, J. E. Panels and S. G. Yan, Dependence of PEM fuel cell performance on catalyst loading, Journal of Power Sources 127 (2004) 162-171
    12. H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental 56 (2005) 9-35
    13. O.T. Holton and J. W. Stevenson, The role of platinum in proton exchange membrane fuel cells, Platinum Metals Review 57 (2013) 259-271
    14. K. C. Neyerlin, W. Gu, J. Jorne and H. A. Gasteiger, Study of the exchange current density for the hydrogen oxidation and evolution reactions, Journal of The Electrochemical Society 154 (2007) B631-633
    15. H. S. Wroblowa, Y. C. Pan and G. Razumney, Electroreduction of oxygen ‐ a new mechanistic criterion, Journal of Electroanalytical Chemistry 69 (1976) 195-201
    16. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jo´nsson, Origin of the overpotential for oxygen reduction at a fuel cell cathode, Journal of Physical Chemistry B 108 (2004) 17886-17892
    17. V. Stamenkovic, B. S. Mun, K. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley and J. K. Norskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew Chem Int Ed Engl 45 (2006) 2897-2901
    18. S. Mukerjee and S. Srinivasan, Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells, Journal of Electroanalytical Chemistry 357 (1993) 201-224
    19. V. R. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross and N. M. Markovic, Effect of surface composition on electronic structure stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces, Journal of the American Chemical Society 128 (2006) 8813-8819
    20. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt‐bimetallic alloy surfaces, Nat Mater 6 (2007) 241-247
    21. E. Antolini, J. R. C. Salgado and E. R. Gonzalez, The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells, Journal of Power Sources 160 (2006) 957-968
    22. E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental 88 (2009) 1-24
    23. E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental 123-124 (2012) 52-68
    24. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669
    25. S. M. Choi, M. H. Seo, H. J. Kim and W. B. Kim, Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation, Carbon 49 (2011) 904-909
    26. B. Seger and P. V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. role of 2‐D carbon support in PEM fuel cells, Journal of Physical Chemistry C 113 (2009) 7990-7995
    27. R. Kou, Y. Shao, D. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, V. V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I. A. Aksay and J. Liu, Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction, Electrochemistry Communications 11 (2009) 954-957
    28. S. H. Lee, N. Kakati, S. H. Jee, J. Maiti and Y. S. Yoon, Hydrothermal synthesis of PtRu nanoparticles supported on graphene sheets for methanol oxidation in direct methanol fuel cell, Materials Letters 65 (2011) 3281-3284
    29. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang and D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell, Journal of Power Sources 155 (2006) 95-110
    30. Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki and W. Sugimoto, Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol, Journal of the Electrochemical Society 147 (2000) 4421-4427
    31. R. Siburian and J. Nakamura, Formation process of Pt subnano-clusters on graphene nanosheets, The Journal of Physical Chemistry C 116 (2012) 22947-22953
    32. W. Li, C. Ling, W. Zhou, J. Qui, Z. Zhou, G. Sun and Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, Journal of Physical Chemistry B 107 (2003) 6292-6299
    33. M. Watanabe, M. Uchida and S. MoToo, Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol, Journal of Electroanalytical Chemistry 229 (1987) 395-406
    34. C. Bock, C. Paquet, M. Couillard, G. A. Botton and B. R. MacDougall, Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism, Journal of the American Chemical Society 126 (2004) 8028-8037
    35. Y. Rico, J. C. Bidegain and C. I. Elsner, Synthetic and natural iron oxide characterization through microparticel voltammetry, Geofísica Internacional 48 (2009) 221-236
    36. G. Jerkiewicz, Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen, Electrocatalysis 1 (2010) 179-199
    37. A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini and L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry, Journal of Power Sources 105 (2002) 13-19
    38. A. Vuorema, P. John, A. T. A. Jenkins and F. Marken, A rotating disc voltammetry study of the 1,8-dihydroxyanthraquinone mediated reduction of colloidal indigo, Journal of Solid State Electrochemistry 10 (2006) 865-871
    39. J. N. Tiwari, K. Nath, S. Kumar, R. N. Tiwari, K. C. Kemp, N. H. Le, D. H. Youn, J. S. Lee and K. S. Kim, Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity, Nat Commun 4 (2013) 2221-2228
    40. G. Tamizhmani, J. P. Dodelet and D. Guayt, Crystallite size effects of carbon-supported platinum on oxygen reduction in acid liquid, Journal of the Electrochemical Society 143 (1996) 18-23
    41. C. Pak, D. Jong, K. Hwan and H. Chang, High performance membrane electrode assemblies by optimization of processes and supported catalysts, INTECH (2012) 259-279
    42. F. Barbir, PEM fuel cell ‐ theory and practice, Elsevier Inc. (2005)
    43. J. Larminie and A. Dicks, Fuel cell systems explained, Wiley Inc. (2003)
    44. Y. Waseda, E. Matsubara and K. Shinoda, X-Ray diffraction crystallography - introduction, examples and solved problems, Springer (2011)
    45. W. Chen and L. Yan, Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure, Nanoscale 2 (2010) 559-563
    46. Z. Ni, Y. Wang, T. Yu and Z. Shen, Raman spectroscopy and imaging of graphene, Nano Research 1 (2010) 273-291
    47. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay and R. O. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Letters 8 (2008) 36-41
    48. T. Torre, A. S. Aricb, V. Alderucci, V. Antonucci and N. Giordano, Analysis of the surface acid-base characteristics Pt/C catalysts for phosphoric acid fuel cells, Applied Catalysis A: General 114 (1994) 257-272
    49. P. L. Antonucci, V. Alderucci, N. Giordano, D. L. Cocke and H. Kim, On the role of surface functional groups in Pt carbon interaction Journal of Applied Electrochemistry 24 (1994) 58-65
    50. C. W. B. Bezerra, L. Zhang, H. Liu, K. Lee, A. L. B. Marques, E. P. Marques, H. Wang and J. Zhang, A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, Journal of Power Sources 173 (2007) 891-908
    51. K. Park, Y. M. Choi, J. Y. Hwang, C. M. Yang, T. W. Kim, N. H. You, H. Y. Koo, J. H. Lee, B. C. Ku and M. Goh, Defect healing of reduced graphene oxide via intramolecular cross-dehydrogenative coupling, Nanotechnology 24 (2013) 185604-185611
    52. C. Nethravathi, E. A. Anumol, M. Rajamathi and N. Ravishankar, Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity, Nanoscale 3 (2011) 569-571
    53. A. M. T. Nakajima, and R. Hagiwara, A new structure model of graphite oxide, Carbon 26 (1988) 357-361
    54. M. C. Hsiao, S. H. Liao, M. Y. Yen, P. I. Liu, N. W. Pu, C. A. Wang and C. C. Ma, Preparation of covalently functionalized graphene using residual oxygen-containing functional groups, ACS Appl Mater Interfaces 2 (2010) 3092-3099
    55. F. P. Du, J. J. Wang, C. Y. Tang, C. P. Tsui, X. P. Zhou, X. L. Xie and Y. G. Liao, Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance, Nanotechnology 23 (2012) 475704-475714
    56. N. Muthuswamy, J. L. de la Fuente, P. Ochal, R. Giri, S. Raaen, S. Sunde, M. Ronning and D. Chen, Towards a highly-efficient fuel-cell catalyst: optimization of Pt particle size, supports and surface-oxygen group concentration, Phys Chem Chem Phys 15 (2013) 3803-3813
    57. P. J. F. Harris, Growth and structure of supported metal catalyst particles, International Material Reviews 40 (1995) 97-114
    58. K. Yoshida, A. Bright and N. Tanaka, Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy, J Electron Microsc (Tokyo) 61 (2012) 99-103
    59. M. C. Roman-Martinez, D. Cazorla-Armoros, A. Linares-Solano and C. S.-M. d. Lecea, Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor, Carbon 33 (1995) 3-13
    60. W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun and Q. Xin, Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell, Electrochimica Acta 49 (2004) 1045-1055
    61. D. He, K. Cheng, T. Peng, X. Sun, M. Pan and S. Mu, Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability, Journal of Materials Chemistry 22 (2012) 21298-21304
    62. K. Jayasayee, J. A. R. V. Veen, T. G. Manivasagam, S. Celebi, E. J. M. Hensen and F. A. de Bruijn, Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals, Applied Catalysis B: Environmental 111-112 (2012) 515-526
    63. J. W. Lim, Y. H. Cho, M. Ahn, D. Y. Chung, Y. H. Cho, N. Jung, Y. S. Kang, O. H. Kim, M. J. Lee, M. Kim and Y.-E. Sung, Ionic Resistance of a Cathode Catalyst Layer with Various Thicknesses by Electrochemical Impedance Spectroscopy for PEMFC, Journal of The Electrochemical Society 159 (2012) B378-384

    無法下載圖示 校內:2024-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE