簡易檢索 / 詳目顯示

研究生: 楊弘華
Yang, Hung-Hua
論文名稱: 鐵鈷鎳鉻基高熵合金於液態鋁湯及空氣中之高溫腐蝕行為研究
Corrosion Behavior of FeCoNiCr-based High Entropy Alloys in Molten Aluminum and in High Temperature Air
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 125
中文關鍵詞: 鐵鈷鎳鉻基高熵合金液態鋁湯高溫空氣腐蝕行為預氧化處理
外文關鍵詞: FeCoNiCr-based high entropy alloys, molten aluminum bath, high temperature air, corrosion behaviors, pre-oxidation treatment
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討鐵鈷鎳鉻基高熵合金於液態鋁湯及空氣中之高溫腐蝕行為以評估其用作盛鋁用容器材料之可行性。本研究中所使用之高熵合金為含鐵、鈷、鎳及鉻四種元素,且具有等莫耳之合金 (代號為H)選擇性添加1~1.5莫耳之錳和(或)鋁元素,形成代號為H-xMn-yAl之合金,其中x和y分別代表合金中錳和鋁元素之原子百分比濃度。
    液態鋁腐蝕之結果顯示,純鐵、鐵鈷鎳鉻等莫耳合金與四種鐵鈷鎳鉻基高熵合金於鋁湯中之腐蝕行為皆呈現線性關係,其腐蝕速率分別為: 純鐵 > H > H-17Al > H-19Mn > H-17Mn-14Al > H-16Mn-21Al,顯示鐵鈷鎳鉻基合金接觸鋁湯後,介面所形成之腐蝕產物無法有效地阻隔鋁液之侵蝕,並且鋁及錳元素的添加對合金抗液態鋁腐蝕性質造成了有害的影響。其中錳元素的添加顯著地促進合金元素擴散進入鋁湯的速率以及增加介面層溶解於鋁湯的速率是合金耐鋁液腐蝕性質降低的主要原因。
    高溫氧化之結果顯示,四種鐵鈷鎳鉻基高熵合金的氧化動力學皆遵守拋物線性定律,其中H-17Al為四種合金中抗氧化能力最佳者、H-16Mn-21Al第二、H-17Mn-14Al第三,而H-19Mn最差,顯示錳元素的添加對合金抗高溫氧化性質造成了有害的影響。而H-17Al及H-16Mn-21Al合金表面能夠在高溫空氣中形成連續且附著性良好的富氧化鋁層是合金抗高溫氧化性質顯著提升的主要原因。
    從液態鋁腐蝕防護之結果可知,預氧化處理可以有效地提升H-17Al及H-17Mn-14Al合金之耐鋁液腐蝕性質,而合金表面之預氧化層與液態鋁反應形成富鋁之氧化物是合金耐鋁液腐蝕的主要原因。

    The object of this study is to investigate the orrosion behavior of FeCoNiCr-based high entropy alloys in molten aluminum bath and in high temperature air and to evaluate feasibility of high entopy alloys for use as the crucible materials for aluminum melts. Alloy design for an experimental FeCoNiCr-based high entropy alloys in this study is based on FeCoNiCr equal-molar alloy (designated as H) by adding Mn and/or Al in 1 to 1.5 molar amounts. Designation for the studied alloys is called H-xMn-yAl with the x and y to indicate the atomic percentage of Mn and Al.
    The results of liquid Al corrosion indicated that the corrosion behaviors of all alloys followed the linear law, and the pure Fe exhibited the best corrosion resistance, whereas H the second, H-17Al the third, H-19Mn the fourth, H-17Mn-14Al the fifth, and H-16Mn-21Al alloy the worst, showing the corrosion product layers formed on the FeCoNiCr-based alloys in molten Al provide less protection than that formed on pure Fe and a detrimental effect of Al and Mn in the FeCoNiCr-based high entropy alloys. The doping of Mn in the reaction product layer might either assist the diffusion of the substrate alloying elements through these phases, or enhance their dissolution in molten Al.
    The results of high temperature oxidation indicated that the oxidation kinetics of all alloys followed the parabolic law, and the H-19Mn alloy exhibited the worst oxidation resistance, whereas H-17Mn-14Al the third, H-16Mn-21Al the second, and H-17Al alloy the best, showing a detrimental effect of Mn in the present alloys. The H-17Al and H-16Mn-21Al alloy outperformed other Mn-containing alloys owing to its ability to form Al-rich oxides and maintain a continuous, slow-growing, and adherent scale.
    In the results of corrosion protection to liquid Al, both pre-oxidized H-17Al and H-17Mn-14Al alloys can effectively improve the resistance to molten Al attack. The microstructure of the oxide scale on the alloy surface changes after immersing in Al melt at 700 oC for 120 minutes and the modified Al-rich scales can cause a increasing of the corrosion resistance of H-17Al and H-17Mn-14Al alloys in molten Al.

    總目錄 中文摘要 I Abstract II 致謝… IV 總目錄 VI 表目錄 IX 圖目錄 XI 第一章、前言 1 第二章、文獻回顧 4 2.1 高熵合金 4 2.1.1 高熵合金的緣起 4 2.1.2 高熵合金的定義及特性 5 2.1.3高熵合金之相關研究回顧 8 2.2 液態鋁腐蝕 17 2.2.1 液態鋁腐蝕之熱力學 17 2.2.2 液態鋁腐蝕之動力學 19 2.3 高溫氧化 19 2.3.1 氧化熱力學 20 2.3.2 氧化動力學 23 2.3.3 氧化機構 25 2.4預氧化處理之選用 28 第三章、實驗方法與步驟 29 3.1 合金製備 29 3.2固液介面反應及液態鋁腐蝕試驗 29 3.3高溫氧化試驗及氧化銹皮性質分析 30 3.4預氧化處理及預氧化之合金耐鋁液腐蝕試驗 31 第四章、結果與討論 33 4.1 高熵合金於液態鋁中之固液介面反應研究 33 4.1.1 固液介面層之微結構及組成分析 33 4.1.2 凝固鋁湯之微結構及組成分析 37 4.1.3 冷卻速率對固液介面反應之影響 38 4.1.4 討論 39 4.2 高熵合金於液態鋁中之腐蝕行為研究 55 4.2.1 基材之組織結構 55 4.2.2 液態鋁腐蝕試驗結果 56 4.2.3 介面層組成及結構分析結果 57 4.2.4 討論 61 4.3 高熵合金於空氣中之高溫氧化行為研究 81 4.3.1 氧化試驗結果 81 4.3.2 銹皮組成及結構分析結果 82 4.3.3 討論 85 4.4 預氧化處理對高熵合金於液態鋁中耐蝕性質之影響 96 4.4.1 預氧化層之結構分析結果 96 4.4.2 預氧化合金之液態鋁腐蝕試驗結果 98 4.4.3 浸鋁後預氧化層之結構分析結果 98 第五章、結論 112 參考文獻 114

    1. R. Taillard and A. Pineau, “The precipitation of the intermetallic compound NiAl in Fe-19wt.%Cr alloys”, Materials Science and Engineering, Vol. 54, pp. 209-219, (1982).
    2. I. M. Wolff, L. E. Iorio,T. Rumpf, P. V. T. Scheers, and J. H. Potgieter, “Oxidation and corrosion behaviour of Fe-Cr and Fe-Cr-Al alloys with minor alloying additions”, Materials Science and Engineering A, Vol. 241, pp. 264-276, (1998).
    3. A. Molinari, M. Pellizzari, G. Straffelini, and M. Pirovano, “Corrosion behaviour of a surface-treated AISI H11 hot work tool steel in molten aluminium alloy”, Surface and Coatings Technology, Vol.126, pp.31-38 (2000).
    4. A. Persson, J. Bergstrom, C. Burman, and S. Hogmark, “Influence of deposition temperature and time during PVD coating of CrN on corrosive wear in liquid aluminum”, Surface and Coatings Technology, Vol. 146-147, pp. 42-47 (2001).
    5. D. N Tsipas, G. K. Triantafyllidis, J. K. Kiplagata, and P. Psillakia, “Degradation behaviour of boronized carbon and high alloy steels in molten aluminum and zinc”, Materials Letters, Vol. 37, pp.128-131 (1998).
    6. D. C. Lou, O. M. Akselsen, M. I. Onsøien, J. K. Solberg, and J. Berget, “Surface modification of steel and cast iron to improve corrosion resistance in molten aluminum”, Surface and Coatings Technology, Vol. 200, pp. 5282-5288 (2006).
    7. D. Toma, W. Brandl, and U. Köster, “Studies on the transient stage of oxidation of VPS and HVOF sprayed MCrAlY coatings”, Surface and Coatings Technology, Vol. 120-121, pp. 8-15 (1999).
    8. W. Brandl, H. J. Grabke, D. Toma, and J. Krüger, “The oxidation behaviour of sprayed MCrAlY coatings”, Surface and Coatings Technology, Vol. 86-87, pp. 41-47 (1996).
    9. W. Brandl, D. Toma, and H. J. Grabke, “The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings”, Surface and Coatings Technology, Vol. 108-109, pp. 10-15 (1998).
    10. D. Strauss, G. Müller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens, and W. J. Quaddakers, “Oxide scale growth on MCrAlY bond coatings after pulsed electron beam treatment and deposition of EBPVD-TBC”, Surface and Coatings Technology, Vol. 135, pp. 196-201 (2001).
    11. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”,Advanced Engineering Materials, Vol. 6, pp. 299-303, (2004).
    12. J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements”, Metallurgical and Materials Transactions A, Vol. 35, pp. 2535-2538, (2004).
    13. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, “Microstructure characterization of Alx CoCrCuFeNi high-entropy alloy system with multiprincipal elements”, Metallurgical and Materials Transactions A, Vol. 36A, pp. 881-893, (2005).
    14. J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and H. C. Cheng, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”, Wear, Vol. 261, pp.513-519, (2006).
    15. Y. P. Wang, B. S. Li, M. X. Ren, C. Yang, and H. Z. Fu, “Microstructure and compressive properties of AlCrFeCoNi high entropy alloy”, Materials Science and Engineering A, Vol. 491, pp. 154-158, (2008).
    16. T. T. Shun, L. Y. Chang, and M. H. Shiu, “Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys”, Materials Science and Engineering A, Vol. 556, pp. 170-174, (2012).
    17. C. Li, J. C. Li, M. Zhao, and Q. Jiang, “Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys”, Journal of Alloys and Compounds, Vol. 504, pp. 515-518 (2010).
    18. A. Gali and E. P. George,“Tensile properties of high- and medium-entropy alloys”, Intermetallics, Vol. 39, pp. 74-78 (2013).
    19. F. Otto, Y. Yang, H. Bei, and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys”, Acta Materialia, Vol.61, pp.2628-2638, (2013).
    20. T. K. Chen and M. S. Wong, “Thermal stability of hard transparent AlxCoCrCuFeNi oxide thin films”, Surface & Coatings Technology, Vol. 203, pp.495-500, (2008).
    21. P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, “Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating”, Advanced engineering materials, Vol. 6, pp. 74-78, (2004).
    22. W. Zhou, Y.G. Zhao, Q.D. Qin, W. Li, and B. Xu, “Effect of pre-oxidation on aluminized coating and their oxidation resistance of Ti alloy”, Materials Letters, Vol. 60, pp. 414-417 (2006).
    23. F. Q. Lang, Z. M. Yu, S. Gedevanishvili, S. C. Deevi, and T. Narita, “Effect of pre-oxidation on the corrosion behavior of Fe-40Al sheet in a N2-11.2O2-7.5CO2-500 ppm SO2 atmosphere at 1273 K”, Intermetallics, Vol.11, pp. 129-134 (2003).
    24. L. C. Chen, C. Zhang, and Z. G. Yang, “Effect of pre-oxidation on the hot corrosion of CoNiCrAlYRe alloy”, Corrosion Science, Vol. 53, pp. 374-380 (2011).
    25. X. Chen, J. F. Stubbins, P. Hosemann, and A. M. Bolind, “Analysis of corrosion scale structure of pre-oxidized stainless steel 316 in molten lead bismuth eutectic and the relation to impedance spectroscopy response”, Journal of Nuclear Materials, Vol. 398, pp. 172-179 (2010).
    26. A. Inoue, T. Zhang, and T. Masumoto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, Vol. 156, pp. 473-480, (1993).
    27. J. W. Yeh, “Recent progress in high-entropy alloys”, European Journal of Control, Vol. 31, pp. 633-648, (2006).
    28. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering A, Vol. 375-377, pp. 213-218, (2004).
    29. S Guo and CT Liu, “Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions”, Chinese Journal of Nature, Vol. 35, pp. 85-96, (2013).
    30. S Guo and CT Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Nature Science: Materials International, Vol. 21(6), pp. 433-446, (2011).
    31. S Guo, Q Hu, C Ng, and CT Liu, “More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase”, Intermetallics, Vol. 41, pp. 96-103, (2013).
    32. S Guo, C Ng, J Lu, and C. T. Liu, “Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys”, Journal of Applied Physics, Vol. 109, 103505(1)-103505(5), (2011).
    33. J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, “Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system”, Acta Materialia, Vol. 62, pp. 105-113, (2014).
    34. M. H. Tsai, H. Yuan, G. M. Cheng, W. Z. Xu, W. W. Jian, M. H. Chuang, C. C. Juan, A. C. Yeh, S. J. Lin, and Y. T. Zhu, “Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy”, Intermetallics, Vol. 33, pp. 81-86, (2013).
    35. C. C. Juan, C. Y. Hsu, C. W. Tsai, W. R. Wang, T. S. Sheu, J. W. Yeh, and S. K. Chen, “On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys”, Intermetallics, Vol. 32, pp. 401-407, (2013).
    36. T. T. Shun, L. Y. Chang, and M. H. Shiu, “Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys”, Materials Science and Engineering A, Vol. 556, pp. 170-174, (2012).
    37. C. Y. Hsu, C. C. Juan, W. R. Wang, T. S. Sheu, J. W. Yeh, and S. K. Chen, “On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys”, Materials Science and Engineering A, Vol. 528, pp. 3581-3588, (2011).
    38. T. T. Shun, C. H. Hung, and C. F. Lee, “The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 °C”, Journal of Alloys and Compounds, Vol. 495, pp. 55-58, (2010).
    39. C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen, and J. W. Yeh, “Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys”, Advanced Engineering Materials, Vol.12, pp. 44-49, (2010).
    40. M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and M .H. Chuang, “Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy”, Metallurgical and Materials Transactions A, Vol.37, pp. 1363-1369, (2006).
    41. C. M. Liu, H. M. Wang, and S.Q. Zhang, “Microstructure and oxidation behavior of new refractory high entropy alloys”, Journal of Alloys and Compounds, Vol. 583, pp. 162-169, (2014).
    42. Ö. N. Doğan, B. C. Nielsen, and J. A. Hawk, “Abnormal High Growth Rates of Metastable Aluminas on FeCrAl Alloys”, Oxidation of Metals, Vol. 80, pp. 177-190 (2013) .
    43. R. J. Tarento and G. Blaise, “Studies of the First Steps of Thin Film Interdiffusion in the Al-Ni System”, Acta Metallurgica, Vol. 37, pp. 2305-2312 (1989).
    44. P. Nash, M. F. Singleton, and J. L. Murray, in: P. Nash (Ed.), “Phase Diagrams of Binary Nickel Alloys”, Materials Park, OH, pp. 3-6 (1991).
    45. D. R. Gaskell, “Introduction to Metallurgical Thermodynamics, 2 nd ed.”, Megraw-Hill, (1983).
    46. D. A. Jones, “Principles and Prevention of Corrosion, 2 nd ed.”, Macmillan Publishing Company, New York, (1992).
    47. N. Birks and G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Eward Amold, Pittsburgh, (1982).
    48. P. Kofstad, “High Temperature Corrosion”, Elsevier Applied Science, London and New York, (1988).
    49. A. S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM International, (2002).
    50. D. Wang, Z. Shi, and L. Zou, “A liquid aluminum corrosion resistance surface on steel substrate” Applied Surface Science, Vol. 214, pp. 304-311 (2003).
    51. A. Salman, B. L. Gabbitas, P. Cao, and D.L. Zhang, “The performance of thermally sprayed titanium based composite coatings in molten aluminum”, Surface and Coatings Technology, Vol. 205, pp. 5000-5008 (2011).
    52. H. Buscail, S. E. Messki, F. Riffard, S. Perrier, and C. Issartel, “Effect of Pre-Oxidation at 800 oC on the Pitting Corrosion Resistance of the AISI 316L Stainless Steel”, Oxidation of Metal, Vol. 75, pp. 27-39 (2011).
    53. X. P. Nie, X. H. Yang, L. Y. Chen, K. B. Yeap, K. Y. Zeng, D. Li, J. S. Pan, X. D. Wang, Q .P. Cao, S. Q. Ding, and J. Z. Jiang, “The effect of oxidation on the corrosion resistance and mechanical properties of a Zr-based metallic glass”, Corrosion Science, Vol. 53, pp. 3557-3565 (2011).
    54. S. P. Simner, M. D. Anderson, G. G. Xia, Z. Yang, L. R. Pederson, and J. W. Stevenson, “SOFC Performance with Fe-Cr-Mn Alloy Interconnect”, Journal of The Electrochemical Society, Vol. 152 (4), pp. A740-A745 (2005).
    55. M. Laure, C. Jean-Louis, and B. C. Fanny, “Oxidation of steels in liquid lead bismuth: Oxygen control to achieve efficient corrosion protection”, Nuclear Engineering and Design, Vol. 241, pp. 1288-1294 (2011).
    56. S. H. Chang, T. P. Tang, and K. T. Huang, “Improvement of Aluminum Erosion Behavior and Corrosion Resistance of AISI H13 Tool Steel by Oxidation Treatment”, ISIJ International, Vol. 50, pp. 569-573 (2010).
    57. G. M. William, The Handbook of Binary Phase Diagrams, Geniurn Pub, Schenectady, New York, (1990).
    58. J. E. Hatch, “Aluminum Properties and Physical Metallurgy”, American Society for Materials, Materials Park, Ohio, pp. 26-27 (1984).
    59. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, and J. Hejazi, “Microstructural analysis of interfacial reaction between molten aluminium and solid iron”, Journal of Materials Processing Technology, Vol. 124, pp. 345-352 (2002).
    60. I. Chumak, K. W. Richter, H. V. Ipser, “The Fe-Ni-Al Phase Diagram in the Al-Rich (> 50 At.% Al) Corner”, Intermetallics, Vol. 15, 1416-1424 (2007).
    61. P. Villars and L. D. Calvert, “Person's Handbook of Crystallographic Data for Intermetallic Phases”, American Society for Materials, Materials Park, Ohio (1991).
    62. A. Takeuchi and A. Inoue,“Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys”, intermetallics, Vol. 18, pp. 1779-1789, (2010).
    63. R. W. Richard, R. D. Jones, P. D. Clements, and H. Clarke, “Metallurgy of continuous hot dip aluminizing”, International Materials Reviews, Vol. 39 (5), pp. 191-212 (1994).
    64. A. Bahadur, “Aluminum coating for steel”, Materials and Manufacturing Processes, Vol. 1, pp. 225-232, (1996).
    65. V. I. Dybkov, “Interaction of 18Cr-10Ni stainless steel with liquid aluminum”, Journal of Materials Science, Vol. 25, pp. 3615-3633, (1990).
    66. S. Shankar and D. Apelian, “Die soldering: mechanism of the interface reaction between molten aluminum alloy and tool steel”, Metallurgical and Materials Transactions A, Vol. 33B, pp. 465-476 (2002).
    67. T. Heumann and S. Dittrich, “Structure character of the FeAl intermetallics compound in hot dip aluminizing process”, International Journal of Materials Research, vol. 50, pp. 617-623 (1959).
    68. K. Bouché, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum” Materials Science and Engineering: A, Vol. 249, 167-175 (1998).
    69. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, and J. Hejazi, “Kinetics of interfacial reaction between solid iron and molten aluminum”, Journal of Materials Science, Vol. 37, pp. 1061-1066 (2002).
    70. U. Burkhardt, Y. Grin, M. Ellner, and K. Peters, “Structure refinement of the iron-aluminum phase with the approximate composition Fe2Al5”, Acta Crystallographica Section B, Vol. 50, pp. 313-316 (1994).
    71. Y. Tanaka and M. Kajihara, “Kinetics of isothermal reactive diffusion between solid Fe and liquid Al”, Journal of Materials Science, Vol. 45, pp. 5676-5684 (2010).
    72. W. J. Cheng and C. J. Wang, “Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter diffraction”, Applied Surface Science, Vol. 257,pp. 4663-4668 (2011).
    73. K. Bouche and F. Barbier, A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum”, Materials Science and Engineering A, Vol. 249, pp. 167-175 (1998).
    74. V. I. Dybkov, “Interaction of iron-nickel alloys with liquid aluminium: Part I Dissolution kinetics”, Journal of Materials Science, Vo. 28, pp. 6371-6380 (1993).
    75. G. F. Carter, “Principles of Physical & Chemical Metallurgy”, American Society for Metals, Materials Park, Ohio (1979)
    76. C. Wagner, “Theoretical analysis of the diffusion processes determining the oxidation rates of alloys”, Journal of The Electrochemical Society, Vol. 99, pp. 369-380 (1952).
    77. Thermodynamic Data for Pure Substance, 3rd edn. (American Chemical Society and American Institute of Physics for National Bureau of Standards, 1995).
    78. J. V. Orman and K. L. Crispin, “Diffusion in Oxides”, Reviews in Mineralogy and Geochemistry, Vol. 72, pp. 757-825 (2010).
    79. P. Kofstad, “High Temperature Corrosion” (Elsevier Applied Science, London, 1988).
    80. A. N. Grundy, B. Hallstedt, and L. J. Gauckler, “Assessment of the Mn-O System”, Journal of Phase Equilibria, Vol. 24, pp. 21-39 (2003).
    81. R. C. George and J. L. Smialek, “Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr”, Oxidation of Metals, Vol. 31, pp. 275-304 (1989).
    82. M. W. Brumm, and H. J. Grabke, “The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys”, Corrosion Science, Vol. 33, pp. 1677-1690 (1992).
    83. H. El. Kadiri, R. Molins, Y. Bienvenu, and M. F. Horstemeyer, “Abnormal High Growth Rates of Metastable Aluminas on FeCrAl Alloys”, Oxidation of Metals, Vol. 64, pp. 63-97 (2005).
    84. H. A. Wriedt, “The Fe-O (Iron-Oxygen) System”, Journal of Phase Equilibria, Vol. 12, pp. 170-200 (1991).
    85. C. L. Yeh and J. Z. Lin, “Combustion synthesis of Cr-Al and Cr-Si intermetallics with Al2O3 additions from Cr2O3-Al and Cr2O3-Al-Si reaction systems”, Intermetallics, Vol. 33, pp. 126-133, (2013).

    下載圖示 校內:2017-02-14公開
    校外:2017-02-14公開
    QR CODE