簡易檢索 / 詳目顯示

研究生: 賴格陸
Lagahit, Miguel Luis R.
論文名稱: 應用轉移學習從移動式光達點雲中萃取並分類路面標記
Road Marking Extraction and Classification from Mobile LiDAR Point Clouds using Transfer Learning
指導教授: 曾義星
Tseng, Yi-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 61
中文關鍵詞: 移動光達道路標記萃取分類轉移學習
外文關鍵詞: Mobile LiDAR, Road Marking, Extraction, Classification, Transfer Learning
相關次數: 點閱:135下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高精地圖(High Definition Map, HD_Map)是輔助自動駕駛車輛(Autonomous Vehicles, AV)所需的高精度三維地圖,完整包含道路上或道路附近與行車有關的空間資訊要素,有助於自駕車的定位、引導、導航及避險等。應用移動式測繪系統(Mobile Mapping System, MMS)獲取資料自動化測製高精地圖是趨勢,本研究嘗試從MMS光達點雲自動萃取並分類道路標記,所採用的理論是一種轉移式的深度學習類神經網路,簡稱為轉移學習(Transfer Learning)。其資料處理流程包括前處理、訓練、萃取分類、及精度評估,前處理作業是先過濾非路面點雲再將點雲轉換為網格式的強度值影像。訓練過程是從選取的訓練資料進行手動註釋和拆分,建立訓練和測試數據集,訓練數據集也可以採用既有的公開資料庫,再利用現有訓練資料擴充之。之後即運用訓練好的機器學習模型從光達強度影像中萃取分類路面標記,然後以人工判讀的成果為參考評估測試成果精度,先評估萃取的正確度、錯誤率、及F1指標,進而評估分類的誤差率。最後也進一步將分類的點雲向量化。實驗結果顯示,最好的測試模型是以5cm解析度的光達強度影像來預訓練U-Net模型。基於F1指標低於都低於15% 的評估,驗證所提方法可成功萃取並分類道路標記,其測試成效與最新發表的論文成果相當。然而,所提方法之萃取完整度優於參考文獻方法,但分類精度則不如所比較的方法,主要原因是本研究同時進行萃取及分類,而比較的方法則先萃取,進而濾除雜訊點群後再進行分類。因此建議未來研究建議可嘗試將萃取和分類過程分開,在兩者之間增加一個濾除機制,進一步降低錯分類誤率。

    High Definition (HD) Maps are highly accurate 3D maps that contain features on or nearby the road that assist with navigation in autonomous vehicles (AVs). One of the main challenges when making such maps is the automatic extraction and classification of road markings. In this paper, a methodology is proposed to use transfer learning to extract and classify road markings from mobile LiDAR. Initially, point clouds were filtered and converted to intensity-based images using several grid cell sizes. Then, it was manually annotated and split to create the training and testing datasets. The training dataset has undergone augmentation before serving as input for evaluating openly available multiple pre-trained neural network models. The models were then applied to the testing dataset and assessed based on their precision, recall, and F1 scores for extraction as well as their error rates for classification. Further processing generated classified point clouds and polygonal vector shapefiles. The results indicate that the best model is the pre-trained U-Net model trained from the intensity-based images with a 5cm resolution. It was able to achieve F1 scores that are comparable with recent work and error rates that are below 15%. However, the classification results are still two or three times greater than those of recent work and as such, it is recommended to separate the extraction and classification procedures, having a step in between to remove misclassifications.

    ABSTRACT i ACKNOWLEDGMENT iii TABLE OF CONTENTS iv LIST OF TABLES v LIST OF FIGURES vii CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.2. Objectives 3 1.3. Literature Review 4 1.4. Thesis Structure 5 CHAPTER 2. METHODOLOGY 7 2.1. Data Pre-Processing 7 2.2. Image Labeling and Data Augmentation 10 2.3. Transfer Learning 11 2.4. Inference and Assessment 12 2.5. Post-Processing of Results 14 CHAPTER 3. EXPERIMENTS 16 3.1. Test Fields and Datasets 16 3.1.1. Shalun Test Field and Dataset 16 3.1.2. Suinan Test Field and Dataset 18 3.2. Data Pre-Processing 19 3.3. Image Labeling and Augmentation 23 3.4. Transfer Learning 28 CHAPTER 4. RESULTS AND DISCUSSION 32 4.1. Resulting Segmented Images 32 4.2. Results of Road Marking Extraction 32 4.3. Results of Road Marking Classification 50 4.4. Post-Processing Results 52 CHAPTER 5. CONCLUSION 56 REFERENCES 58

    Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11211 LNCS, 833–851. https://doi.org/10.1007/978-3-030-01234-2_49
    Chen, Z., Devereux, B., Gao, B., & Amable, G. (2012). Upward-fusion urban DTM generating method using airborne Lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 72, 121–130. https://doi.org/10.1016/j.isprsjprs.2012.07.001
    Cheng, M., Zhang, H., Wang, C., & Li, J. (2017). Extraction and Classification of Road Markings Using Mobile Laser Scanning Point Clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(3), 1182–1196.
    Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 3213–3223. https://doi.org/10.1109/CVPR.2016.350
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. CVPR09.
    Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338. https://doi.org/10.1007/s11263-009-0275-4
    GDAL/OGR contributors. (2020). {GDAL/OGR} Geospatial Data Abstraction software Library. https://gdal.org
    He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386–397. https://doi.org/10.1109/TPAMI.2018.2844175
    Ho, D., Liang, E., & Liaw, R. (2019, June 7). 1000x Faster Data Augmentation – The Berkeley Artificial Intelligence Research Blog. https://bair.berkeley.edu/blog/2019/06/07/data_aug/
    Hoang, T. M., Nam, S. H., & Park, K. R. (2019). Enhanced Detection and Recognition of Road Markings Based on Adaptive Region of Interest and Deep Learning. IEEE Access, 7(2), 109817–109832. https://doi.org/10.1109/access.2019.2933598
    Hu, J., Abubakar, S., Liu, S., Dai, X., Yang, G., & Sha, H. (2019). Near-infrared road-marking detection based on a modified faster regional convolutional neural network. Journal of Sensors, 2019. https://doi.org/10.1155/2019/7174602
    Kim, H., Liu, B., & Myung, H. (2017). Road-feature extraction using point cloud and 3D LiDAR sensor for vehicle localization. 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017, 2, 891–892. https://doi.org/10.1109/URAI.2017.7992858
    Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5), 740–755. https://doi.org/10.1007/978-3-319-10602-1_48
    Liu, R., Wang, J., & Zhang, B. (2019). High Definition Map for Automated Driving: Overview and Analysis. Journal of Navigation, 324–341. https://doi.org/10.1017/S0373463319000638
    Ma, L., Li, Y., Li, J., Wang, C., Wang, R., & Chapman, M. A. (2018). Mobile laser scanned point-clouds for road object detection and extraction: A review. Remote Sensing, 10(10), 1–33. https://doi.org/10.3390/rs10101531
    PDAL - Point Data Abstraction Library — pdal.io. (n.d.). Retrieved March 22, 2020, from https://pdal.io/
    Pingel, T. J., Clarke, K. C., & McBride, W. A. (2013). An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 77(October 2017), 21–30. https://doi.org/10.1016/j.isprsjprs.2012.12.002
    Riveiro, B., González-Jorge, H., Martínez-Sánchez, J., Díaz-Vilariño, L., & Arias, P. (2015). Automatic detection of zebra crossings from mobile LiDAR data. Optics and Laser Technology, 70, 63–70. https://doi.org/10.1016/j.optlastec.2015.01.011
    Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
    Seif, H. G., & Hu, X. (2016). Autonomous Driving in the iCity—HD Maps as a Key Challenge of the Automotive Industry. Engineering, 2(2), 159–162. https://doi.org/10.1016/J.ENG.2016.02.010
    Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651. https://doi.org/10.1109/TPAMI.2016.2572683
    Soilán, M., Riveiro, B., Martínez-Sánchez, J., & Arias, P. (2017). Segmentation and classification of road markings using MLS data. ISPRS Journal of Photogrammetry and Remote Sensing, 123, 94–103. https://doi.org/10.1016/j.isprsjprs.2016.11.011
    Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11141 LNCS, 270–279. https://doi.org/10.1007/978-3-030-01424-7_27
    Wen, C., Sun, X., Li, J., Wang, C., Guo, Y., & Habib, A. (2019). A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 147(October 2018), 178–192. https://doi.org/10.1016/j.isprsjprs.2018.10.007
    Wolf, J., Richter, R., Discher, S., & Döllner, J. (2019). Applicability of neural networks for image classification on object detection in mobile mapping 3D point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4/W15), 111–115. https://doi.org/10.5194/isprs-archives-XLII-4-W15-111-2019
    Yang, B., Fang, L., Li, Q., & Li, J. (2012). Automated extraction of road markings from mobile lidar point clouds. Photogrammetric Engineering and Remote Sensing, 78(4), 331–338. https://doi.org/10.14358/PERS.78.4.331
    Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., & Torralba, A. (2019). Semantic Understanding of Scenes Through the ADE20K Dataset. International Journal of Computer Vision, 127(3), 302–321. https://doi.org/10.1007/s11263-018-1140-0

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE