簡易檢索 / 詳目顯示

研究生: 張士鈺
Zhang, Shi-Yu
論文名稱: 利用熱力學法評估氫載體對於SOFC/EC與子系統之性能及效率影響
Evaluating the Impact of Hydrogen Carriers on the Performance and Efficiency of SOFC/EC and Subsystems Using Thermodynamic Methods
指導教授: 陳朝光
Chen, Cha'o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 107
中文關鍵詞: 固態氧化物電解電池固態氧化物燃料電池SOFC/SOEC混合系統哈伯法氨燃料
外文關鍵詞: Solid Oxide Electrolysis Cells (SOECs), Solid Oxide Fuel Cells (SOFCs), SOFC/SOEC Hybrid System, Haber Process, Ammonia Fuel
相關次數: 點閱:30下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要評估基於固態氧化物燃料電池(SOFC)及固態氧化物電解電池(SOEC)與再生能源結合之系統性能。此系統利用SOEC將再生能源多餘之電力產生氨氣,再由SOFC通過裂解氨氣後進行發電,其中系統採雙邊同時運行,加入不同組件維持系統運作如:熱交換器、後燃室、電熱器維持電堆運作並提升系統效率,並且評估不同裂解比例、溫度、燃料利用率、蒸氣利用率及熱損對於子系統的影響。此外,本研究也對兩種不同產氨氣之方式進行評估,觀察不同產氨氣方式對於系統效率的影響。
    為了評估上述不同參數對於系統的影響,本研究建立了數學模型,模擬整個系統運作過程中不同參數對於系統的響應,其中為要探討能量轉換之問題,而熱力學法唯一探討能量轉換之科學,因此本研究採用熱力學法進行評估。而從結果可以得知,對於使用氨氣料源的SOFC電堆而言,溫度每上升50K電堆最大輸出功率可以上升10.4%。對於SOEC電堆而言,溫度每上升50K產氨效率平均上升2%。不過隨著溫度升高也要考慮熱損組件的問題,可以看到熱損從1%上升至10%時對於電熱器所需的功率增加了0.67KW上升了30% 。
    本研究模擬氫氣及氨氣流量計算了不同氨氣裂解比例的結果,以SOFC而言以873K的溫度為例,最大輸出淨功在裂解比例為80%為24.1KW,然而在90%時的最大輸出淨功為24.16KW,而在溫度1073K燃料利用率為90%時有最大的系統效率;而對於SOEC而言,在溫度1073K蒸氣利用率為70%時有最大的產氨氣效率。
    而比較不同SOEC的產氨氣子系統,使用SOEC-HB產氨對於產氨氣的效率是有提升的,在四個溫度哈伯法產氨氣平均比直接氨氣還多9%的功率輸入,因此對於使用哈伯法產氨之子系統是可行的。
    透過完成此研究可以根據不同熱損模擬出來的結果進行設計。再來透過模擬不同裂解比例結果,可以看出對於系統的影響,也能夠對於不同電解質材料有不同裂解比例能夠有一定的參考價值。

    To evaluate the effects of these different parameters on the system, a mathematical model was established, and thermodynamic analysis was used to simulate the system's response to different parameters. The results show that for the SOFC stack using ammonia as fuel, the maximum output power increases by 10.4% for every 50K rise in temperature. For the SOEC stack, the ammonia production efficiency increases by an average of 2% for every 50K rise in temperature. However, as the temperature increases, the issue of heat loss must be considered. It is observed that when heat loss increases from 1% to 10%, the power required by the electric heater increases by 0.67kw, a 30% rise.
    This study simulates hydrogen and ammonia flow to calculate the results of different ammonia decomposition ratios. For SOFC, at a temperature of 873K, the maximum net output power is 24.1KW at an 80% decomposition ratio, while the maximum net output power is 24.16KW at a 90% decomposition ratio. At a temperature of 1073K and a fuel utilization rate of 90%, the system efficiency is maximized. For SOEC, at a temperature of 1073K and a steam utilization rate of 70%, the ammonia production efficiency is maximized.
    Comparing different SOEC ammonia production subsystems, using the SOEC-HB for ammonia production improves ammonia production efficiency. At four temperatures, the Haber process produces an average of 9% more power input for ammonia production than direct ammonia, making the Haber process a feasible subsystem for ammonia production.

    摘 要I Evaluating the Impact of Hydrogen Carriers on the Performance and Efficiency of SOFC/EC and Subsystems Using Thermodynamic MethodsIII 誌 謝X 目錄XI 表目錄XIII 圖目錄XIII 符號說明XVII 第一章 緒論1 1.1 研究動機1 1.2 研究目的3 1.3 研究架構3 第二章 文獻回顧4 2.1固態氧化物燃料電池(SOFC)回顧4 2.1.1 燃料電池原理及種類4 2.2固態氧化物燃料電池(SOFC)系統使用氨氣為料源5 2.2.1氨氣裂解流程及方式6 2.3氨氣生產8 2.3.1哈伯法生產氨氣9 2.3.2固態氧化物電解電池(SOEC)生產氨氣10 2.4 PV-SOEC-SOFC混合系統11 第三章 理論模型12 3.1 研究假設12 3.2 SOFC系統分析13 3.2.1活化過電位 (Activation Overpotential)16 3.2.2歐姆過電位 (Ohmic Overpotential)17 3.2.3濃度過電壓 (Concentration Overpotential)18 3.2.4 SOFC輸出功率與效率分析19 3.2.5 SOFC陰陽極出口溫度計算20 3.3 SOEC系統分析22 3.3.1 SOEC輸入功率與效率分析25 3.4 全系統架構與子系統分析27 3.4.1 後燃室子系統分析34 3.4.2 熱交換器子系統分析34 3.4.3 電熱器子系統分析35 3.4.4 哈伯反應器子系統分析36 3.4.5 全系統功率與效率分析37 3.5 計算流程38 第四章 結果與討論40 4.1 驗證電池模型的性能40 4.1.1 SOFC性能驗證40 4.1.2 SOEC性能驗證42 4.2使用氨料源對於SOFC電池之輸出電壓、輸出功率44 4.3溫度變化對於氨料源SOFC電堆之過電位之響應47 4.4生產氨氣及氫氣SOEC電堆之輸入電壓、輸入功率及效率49 4.5溫度效應對於產氨SOEC電堆之過電位之響應53 4.6不同氨氣裂解比例隨溫度變化對SOFC子系統之響應55 4.7不同熱損對SOFC子系統之響應60 4.8燃料利用率對SOFC子系統之響應63 4.9蒸氣利用率對SOEC子系統系統之響應68 4.10不同哈伯法SOEC產氨之子系統之響應及比較72 4.11不同產氨之子系統對於發電系統與電解系統的Sankey Diagram74 第五章 結論與未來展望78 5.1 結論78 5.2 未來展望80 參考文獻81

    [1]YAĞLı H, KO÷ Y, KO÷ A, et al. Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat [J]. Energy, 2016, 111: 923-32.
    [2]Gils H C, Simon S, Soria R. 100% renewable energy supply for Brazil—The role of sector coupling and regional development [J]. Energies, 2017, 10(11): 1859.
    [3]Al-Khori K, Bicer Y, Ko÷ M. Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants [J]. Energy, 2021, 222: 119923.
    [4]許邵涵. 以熱力學法探討氫載體對於SOEC/SOFC系統於日間儲能及夜間發電之性能與效率分析 [D]. 台南市; 國立成功大學, 2023.
    [5]Kamalimeera N, Kirubakaran V. Prospects and restraints in biogas fed SOFC for rural energization: A critical review in indian perspective [J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110914.
    [6]Mekhilef S, Saidur R, Safari A. Comparative study of different fuel cell technologies [J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 981-9.
    [7]Ibrahim H, Ilinca A, Perron J. Energy storage systems—Characteristics and comparisons [J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-50.
    [8]Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel [J]. Journal of Power Sources, 2008, 185(1): 459-65.
    [9]Sazali N, WAN Salleh W N, Jamaludin A S, et al. New perspectives on fuel cell technology: A brief review [J]. Membranes, 2020, 10(5): 99.
    [10]XU X, BI L. Proton-conducting electrolyte materials [M]. Intermediate Temperature Solid Oxide Fuel Cells. Elsevier. 2020: 81-111.
    [11]Smil V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production [M]. MIT press, 2004.
    [12]Sigal C T, Vayenas C G. Ammonia oxidation to nitric oxide in a solid electrolyte fuel cell [J]. Solid State Ionics, 1981, 5: 567-70.
    [13] Wojcik A, Middleton H, Damopoulos I. Ammonia as a fuel in solid oxide fuel cells [J]. Journal of Power Sources, 2003, 118(1-2): 342-8.
    [14]Staniforth J, Ormerod R M. Clean destruction of waste ammonia with consummate production of electrical power within a solid oxide fuel cell system [J]. Green Chemistry, 2003, 5(5): 606-9.
    [15]Meng G, Jiang C, Ma J, et al. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen [J]. Journal of Power Sources, 2007, 173(1): 189-93.
    [16]Cinti G, Desideri U, PENCHINI D, et al. Experimental analysis of SOFC fuelled by ammonia [J]. Fuel Cells, 2014, 14(2): 221-30.
    [17]Kishimoto M, Muroyama H, Suzuki S, et al. Development of 1 kW‐class ammonia‐fueled solid oxide fuel cell stack [J]. Fuel Cells, 2020, 20(1): 80-8.
    [18]Rathore S.S, Biswas S, Fini D, et al. Direct ammonia solid-oxide fuel cells: A review of progress and prospects [J]. International Journal of Hydrogen Energy, 2021, 46(71): 35365-84.
    [19]OKANISHI T, OKURA K, SRIFA A, et al. Comparative Study of Ammonia‐fueled Solid Oxide Fuel Cell Systems [J]. Fuel Cells, 2017, 17(3): 383-90.
    [20]Y. Sun, T. Qian, J. Zhu, N. Zheng, Y. Han, G. Xiao, M. Ni, H. Xu, “Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation”, Volume 263, Article 125725, 2023.
    [21]S.S. Rathore, S. Biswas, D. Fini , S. Giddey, “Direct ammonia solid-oxide fuel cells: A review of progress and prospects” International Journal of Hydrogen Energy, Volume 46, Issue 71, pp. 35365-35384, 2021.
    [22] T. Okanishi, K. Okura, A. Srifa , H. Muroyama, T. Matsui, “Comparative Study of Ammonia-fueled Solid Oxide Fuel Cell Systems”, FUEL CELLS, Volume 17, No. 3, pp. 383–390, 2017.
    [23] J. Zhou, Z. Wang, M. Han, Z. Sun, K. Sun, “Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels”, International Journal of Hydrogen Energy, Volume 47, Issue 6, pp. 4109-4119, 2022.
    [24] M. Ni, D.Y.C. Leung, M.K.H. Leung, “Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte”, Journal of Power Sources, Volume 183, Issue 2, pp. 687-692, 2008.
    [25] N.D. Tuyen, G. Fujita, “Modelling a SOFC Power Unit Using Natural Gas Fed Directly”, Advances in Natural Gas Technology, 2012.
    [26] Shy S, Hsieh S, Chang H. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements [J]. Journal of Power Sources, 2018, 396: 80-7.
    [27] Y. Zhao, H. Xue, X. Jin, B. Xiong, R. Liu, Y. Peng, L. Jiang, G. Tian, “System level heat integration and efficiency analysis of hydrogen production process based on solid oxide electrolysis cells”, International Journal of Hydrogen Energy, Volume 46, Issue 77, pp. 38163-38174, 2021.
    [28] E. Açıkkalp, “Thermo-environmental performance analysis of irreversible solid oxide fuel cell – Stirling heat engine”, International Journal of Ambient Energy, Volume 39, Issue 7, pp. 751-758 , 2018
    [29] T.Q. Quach, V.T. Giap, D.K. Lee, T.P. Israel, K.Y. Ahn, “High-efficiency ammonia-fed solid oxide fuel cell systems for distributed power generation”, Applied Energy, Volume 324, Article 119718, 2022.
    [30] X. Chen, Y. Pan, J. Chen, “Performance and Evaluation of a Fuel Cell–Thermoelectric Generator Hybrid System”, Fuel Cell, Volume10, Issue6, pp. 1164-1170, 2010.
    [31] S. Licht, B. Cui, B. Wang, F.F. Li, J. Lau, S. Liu, “Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3”, VOL 345, ISSUE 6197, pp. 637-639, 2012
    [32] L. Hollevoet, M.D. Ras, M. Roeffaers, J. Hofkens, J.A. Martens, “Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency”, ACS Energy, Volume 5, Issue 4, pp. 1124–1127, 2020.
    [33] Y. Patcharavorachot, N. Chatrattanawet, A. Arpornwichanop, D. Saebea, “Comparative energy, economic, and environmental analyses of power-to-gas systems integrating SOECs in steam-electrolysis and co-electrolysis and methanation”, Thermal Science and Engineering Progress, Volume 42, Article 101873, 2023.
    [34] Y. Cengel, M. Boles, “Thermodynamics: An Engineering Approach 8th Edition”, Wiley, 2015.
    [35] P. Guo, N. Bharath Kumar, Y. Elmasry, A. Alanazi, T.I. Alanazi, A. Armghan, A.M. Algelany, “CO2 hydrogenation for geothermal energy storage through synthetic natural gas production and byproduct of refrigeration and freshwater using solid oxide electrolyzer cell (SOEC) and methanation reactor; Techno-economic evaluation and multi-objective optimization”, Journal of CO2 Utilization, Volume 69, Article 102395, 2023.
    [36] Juangsa F.B, Irhamna A.R, Aziz M. Production of ammonia as potential hydrogen carrier: Review on thermochemical and electrochemical processes [J]. International Journal of Hydrogen Energy, 2021, 46(27): 14455-77.
    [37] Q. Wang, L. Duan , Z. Lu, N. Zheng, “Thermodynamic performance comparison of SOFCMGT-CCHP systems coupled with two different solar methane steam reforming processes”, International Journal of Hydrogen Energy, 2023.
    [38] Y. Cao, T. parikhani, “A solar-driven lumped SOFC/SOEC system for electricity and hydrogen production: 3E analyses and a comparison of different multi-objective optimization algorithms”, Journal of Cleaner Production, Volume 271, Article 122457, 2020.
    [39] Lin L, Lin Z, Xia Q, et al. Full-spectrum solar energy utilization for green ammonia production via solid oxide electrolysis cell coupled with Haber-Bosch process [J]. Energy Conversion and Management, 2024, 310: 118488.
    [40] Santarelli M, Leone P, Calü M, et al. Experimental evaluation of the sensitivity to fuel utilization and air management on a 100kW SOFC system [J]. Journal of Power Sources, 2007, 171(1): 155-68.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE