簡易檢索 / 詳目顯示

研究生: 謝文棟
Sie, Wun-Dong
論文名稱: 證據權重法與模糊邏輯在山崩潛感分析之研究與比較:以荖濃溪為例
A study of landslide susceptibility by using Weight-of-Evidence and fuzzy logic methods: A case study in the Lao-Nong River watershed
指導教授: 林慶偉
Lin, Ching-Weei
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 159
中文關鍵詞: 山崩潛感分析證據權重法模糊邏輯
外文關鍵詞: Landslide susceptibility analysis, Weights-of-Evidence, Fuzzy logic
相關次數: 點閱:127下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用證據權重法(Weights-of-Evidence)與模糊邏輯(Fuzzy logic)並以荖濃溪流域作為研究區域進行山崩潛感分析,分析事件為2007到2009年間的柯羅莎、米塔、卡玫基、辛樂克、莫拉克五個颱風事件並使用福爾摩沙2號衛星影像建立各事件之山崩目錄,而選用分析的地質或地形因子則有坡度、坡向、坡形、高程、岩性、常態化差異植生指標、構造距離和河道距離共八個因子。
    證據權重法為統計學中的雙變量統計方法,其利用貝氏定理與勝算比(odds ratio)概念計算各因子權重值,最後透過疊加分析將所有因子權重值進行加總以獲得山崩潛感值並產製山崩潛感圖。此外,本研究也將嘗試以證據權重法來決定各單一因子歸屬值,最後利用模糊運算子(fuzzy operator)計算當全因子存在時的最終歸屬值並以此作為山崩潛感值。
    研究結果顯示,此兩種分析方法其成功率曲線AUC值可達至0.9,預測率曲線AUC值則可達到0.8,在潛感值前30%的高及中高潛感層級可包含約80%總崩塌,顯示利用這兩種方法所產製的山崩潛感圖可有效的預測崩塌可能發生區域。

    The Lao-Nong River watershed is selected as the study area for generating landslide susceptibility map by using Weight-of-Evidence and fuzzy logic methods. The landslides that used to generate susceptibility maps were identified from 6 FORMOSAT 2 images that covered five typhoons from 2007 to 2009. The geological or topographic parameters including slope gradient, slope aspect, landform, elevation, lithology, normalized difference vegetation index (NDVI), the distance from structure and the distance from stream are selected as evaluation factors.
    Weight-of-Evidence model is a bivariate statistical approach which uses the concept of Bayes' theorem and odds ratio to calculate the weighting of each evaluation parameter. For each parameter, a weighting value for landslide susceptibility can be derived, and the weight values of all parameters are then summed to generate the landslide susceptibility map. Additionally, the membership value of each evaluated parameter is also determined by using Weight-of-Evidence model, and the final membership value for landslide susceptibility is derived by using fuzzy operators.
    The study results show the area under the success rate curves reaches to 90%, and the area under the prediction rate curves reaches to 80%. The areas of top 30% landslide susceptibility index cover about 80% landslides. This indicates that the susceptibility map constructed by two methods can effectively predict the location of landslides.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究區域 2 1-2-1 荖濃溪流域概述 2 1-2-2 地形 3 1-2-3 地質 4 第二章 前人研究 8 2-1 崩塌的基本類型 8 2-2 崩塌的影響因子 10 2-3 國內崩塌潛感相關研究 14 2-4 證據權重法 17 2-5 模糊邏輯 18 第三章 研究流程與方法 19 3-1 建立新增崩塌地目錄 23 3-2 分析因子資料處理 25 3-3 證據權重法 31 3-3-1 貝氏定理與勝算比 31 3-3-2 單因子量化 32 3-3-3 兩個或兩個因子以上連結 34 3-3-4 獨立檢定與效應分析 36 3-3-5 驗證方法 38 3-4 模糊邏輯 40 第四章 研究成果 45 4-1 新增崩塌地判釋成果 45 4-2 各事件權重值與歸屬值計算結果 47 4-3 證據權重法分析結果 48 4-3-1 獨立檢定 48 4-3-2 效應分析 49 4-4 模糊邏輯分析結果 54 4-5 潛感圖繪製與驗證 56 4-6 潛感圖差異分析結果 65 4-7 合併多期訓練事件分析結果 67 第五章 討論 71 5-1 證據權重法 71 5-1-1 獨立檢定 71 5-1-2 效應分析 76 5-2 模糊邏輯 78 5-3 潛感圖差異分析 80 5-4 各訓練事件分析與驗證結果比較 81 5-5 累計目錄結果比較 85 第六章 結論與建議 87 6-1 結論 87 6-2 建議 89 參考文獻 90 附錄一 各事件權重值與歸屬值計算結果 100 附錄二 各事件獨立檢定結果 118 附錄三 各事件所用分析方法之成功率與預測率曲線 124 附錄四 各事件所用分析方法之潛感圖 133 附錄五 累計目錄計算權重值、成功率與預測率曲線、潛感圖成果 142

    王鑫(1981),地景法邊坡穩定性的分析研究,工程環境會刊,第2期,頁73-91。
    何春蓀(1986),臺灣地質概論臺灣地質圖說明書,第二版,臺北:經濟部中央地質調查所,頁40-106。
    李三畏(1984),台灣崩塌問題探討,地工技術,第7期,頁43-49。
    李錫堤(2005),山崩調查與危險評估:山崩潛感分析之研究(3/3),經濟部中央地質調查所報告,94-18,臺北縣中和市:經濟部中央地質調查所,1冊。
    李錫堤,費立沅,李錦發,林銘郎,董家鈞,張瓊文(2008),石門水庫集水區的山崩與土石流潛感分析,第六屆海峽兩岸山地災害與環境保育學術研討會論文光碟,頁1-10。
    李錫堤、費立沅、李錦發、林銘郎、董家鈞、張瓊文(2008),事件型山崩潛感分析流程-以大甲溪流域為例,2008流域地質與坡地災害研討會論文集,1-1~1-21。
    李錫堤、費立沅、李錦發、李彥良、林銘郎、董家鈞、張瓊文(2009),高屏溪流域之山崩土石流災害潛勢分析,2009流域地質與坡地災害研討會論文集,E-1~E-17。
    李錫堤、費立沅、陳勉銘、李彥良、林銘郎、董家鈞、張瓊文(2010),蘭陽溪流域之山崩土石流災害潛勢分析,2010流域地質與坡地災害研討會論文集,D-1~D-18。
    林振平(1991),泥岩地區坡地破壞潛能分析, 國立成功大學土木工程研究所碩士論文,88頁。
    洪如江、林美聆、陳天健、王國隆(2000),921集集大地震相關的坡地災害坡地破壞特性與案例分析,地工技術,第81期,頁17-31。
    胡蘇澄、李麗玲(1997),台灣中部七家灣溪集水區潛在崩塌危險地之評定,台灣林業科學,第13卷,第4期,第271頁。
    張石角(1980),都市山坡地利用潛力調查與製圖-方法論與實例,中華水土保持學報,第11卷,第1期,頁13-24。
    張石角(1989),陽明山國家公園環境敏感區及潛在災害地區之調查研究,內政部營建署陽明山國家公園管理處。
    張石角(1995),台灣東部之環境地質分區與崩塌類型,工程環境月刊,第14期,頁59-85。
    許琦、李德河、莊長賢(1989),模糊集理論在山崩潛感性分析之應用,第三屆大地工程學術研究討論會,頁23-33。
    許煜煌(2002),以不安定指數法進行地震引致坡地破壞模式分析,國立台灣大學土木工程學研究所碩士論文,153頁。
    許輔仁(2002),鯉魚潭水庫集水區之崩塌地潛感分佈研究,屏東科技大學森林系研究所碩士論文,105頁。
    陳志豪(2002),變質岩公路邊坡之破壞潛勢分析-以南橫公路啞口至新武段為例,國立成功大學資源工程研究所碩士論文,頁124。
    陳信洲(2005),邊坡破壞潛勢分析-以阿里山台18線公路為例,國立成功大學土木工程學系碩士論文,102頁。
    陳崇華(2004),台十一線海岸公路邊坡崩塌災害分析,國立東華大學自然資源管理研究所碩士論文,90頁。
    陳意璇(2002),溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程學研究所碩士論文,141頁。
    游中榮(1996),應用地理資訊系統於北橫地區山崩潛感之研究,國立中央大學應用地質研究所碩士論文,192頁。
    馮豐隆、林鴻鵬(2003),惠蓀林場921地震崩塌地分布分析與復育探討,林業研究季刊,第二十五卷,第4期,頁1-21。
    黃春銘(2005),使用模糊類神經網路進行山崩潛感分析-以臺灣中部國姓地區為例,國立中央大學應用地質研究所碩士論文,125頁。
    黃臺豐(1999),瑞里地震誘發之山崩,國立中央大學應用地質研究所碩士論文,79頁。
    楊智光(2002),地震衍生重要山區道路護坡工程之破壞機制探討分析,國立屏東科技大學土木工程學系碩士論文,162頁。
    溫振宇(2005),結合地震與颱風因子之山崩模式分析,國立成功大學地球科學研究所碩士論文,103頁。
    經濟部中央地質調查所(1980),台灣坡地社區工程地質調查與探勘報告—總論,經濟部中央地質調查所,第1卷,第一集,73頁。
    廖軒吾(2000),集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文,90頁。
    劉守恆(2002),衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學研究所碩士論文,83頁。
    潘國樑(1982),從環境地質觀點論本省山坡地之開發,礦業技術,第2卷,第3期,頁168-183。
    鄭傑銘(2003),應用GIS進行豪雨及地震引致山崩之潛感性分析,國立台灣大學土木工程研究所碩士論文,210頁。
    謝豪榮(1991),森林在水資源涵養效益評估之研究,集水區經營研習會講義。
    簡世宏,2004,SPOT衛星遙測影像與DEM應用於崩塌地潛勢分析之研究-以清水集水區為例,國立中興大學水土保持學系碩士論文,72頁。
    簡李濱(1992),應用地理資訊系統建立坡地安定評估之計量方法,國立中興大學土木工程研究所,114頁。
    魏鎮東(2001),南橫公路邊坡落石坍方可能性之探討,國立台北科技大學材料及資源工程系碩士班碩士論文,頁167。
    Agterberg, F.P. (1992), Combining indicator patterns in weights of evidence modeling for resource evaluation, Natural Resources Research, Volume 1, Number 1, pp.39-50.
    Agterberg, F.P., Bonham-Carter, G.F., Cheng, Q., Wright, D.F. (1993), Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In: Davis, J.C., Herzfeld, U.C. (Eds.), Computers in Geology, 25 Years of Progress. Oxford University Press, Oxford, pp.13-32.
    An, P., Moon, W.M., Rencz, A. (1991), Application of fuzzy set theory to integrated mineral exploration, Canadian Journal of Exploration Geophysics, Volume 27, Number 1, pp.1-11.
    Bellman, R.E., Zadeh, L.A. (1970), Decision making in a fuzzy environment, Management Science, Volume 17, Number 4, B141-164.
    Benda, L.E., Cundy, T.W. (1990), Predicting depositions of debris flows in mountain channels, Canadian Geotechnical Journal, 27, pp.409-417.
    Binaghi, E., Luzi, L., Madella, P., Pergalani, F., Rampini, A. (1998), Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches. Natural hazards, Volume 17, Number 1, pp.77-97.
    Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F. (1988), Integration of geological datasets for gold exploration in Nova Scotia, Photogrammetic Engineering and Remote Sensing, Volume 54, pp.1585–1592.
    Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F. (1989), Weights-of-evidence modeling: a new approach to mapping mineral potential, In Statistical Applications in the Earth Sciences, edited by F.P. Agterberg and G.F. Bonham-Carter, Paper 89-9, pp. 171–183.
    Bonham-Carter, G.F. (1994), Geographic Information Systems for Geoscientists, Modeling with GIS, pp.267-329.
    Campbell, R.H. (1974), Debris flows originating from soil slips during rainstorms in Southern California, Quarterly Journal of Engineering Geology & Hydrogeology, Volume 7, Number 4, pp.339-349.
    Carranza, E.J.M., Hale, M. (2000), Geologically Constrained Probabilistic Mapping of Gold Potential, Baguio District, Philippines, Natural Resources Research, Volume 9, Number 3, pp.237-253.
    Carranza, E.J.M., Hale, M. (2002), Spatial association of mineral occurrences and curvilinear geological features, Mathmatical Geology, Volume 34, pp.203-221.
    Cheng, Q. (2004), Application of weights of evidence method for assessment of flowing wells in the Greater Toronto area, Canada, Natural Resource Research, Volume 13, Number 2, pp.77-86.
    Choi, J.K., Kim, K.D., Lee, S., Won, J.S. (2010), Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in Taebaek City, Korea, Environmental Earth Sciences, Volume 59, Number 5, pp.1009-1022.
    Choi, S., Moon, W.M., Choi S.G.. (2000), Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea, Geosciences Journal, Volume 4, Number 2, pp.43-52.
    Chung, C.F., Fabbri, A.G. (1993), The representation of geoscience information for data integration, Natural Resources Research, Volume 2, Number 2, pp.122-139.
    Chung, C.F., Leclerc, Y. (1994), A quantitative technique for zoning landslide hazard, International Association of Mathematical Geology - IAMG'94, Mont Tremblant, Canada, pp.87-93.
    Chung, C.F., Fabbri, A.G. (1999), Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering & Remote Seneing, 65(12), pp.1389-1399.
    Chung, C.F., Fabbri, A.G. (2003), Validation of spatial prediction models for landslide hazard mapping, Natural Hazards, Volume 30, pp.451-472.
    Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., Paudyal, P. (2008), Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence, Geomorphology, Volume 102, Issues 3-4, pp.496-510.
    Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., Nishino K. (2008), GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping, Environmental Geology Volume 54, Number 2, pp.311-324.
    Daneshfar, B., Benn, K. (2002), Spatial relationships between natural seismicity and faults, southeastern Ontario and north-central New York state, Tectonophysics 353, pp.31-44.
    Dickson, B.G., Prather, J.W., Xu, Y., Hampton, H.M., Aumack, E.N., Sisk, T.D. (2006), Mapping the probability of large fire occurrence in northern Arizona, USA, Landscape Ecology, Volume 21, Number 5, pp.747-761.
    Dietrich, W.E., Dunne, T. (1978), Sediment budget for a small catchment in mountainous terrain, Zeitschrift für Geomorphologie, 29, pp.191-206.
    Dikau, R., 1989. The application of a digital relief model to landform analysis in geomorphology. In: Raper, J. (Ed.), Three Dimensional Applications in Geographical Information Systems. Taylor and Francis, London, pp.51-77.
    Hack, J.T., Goodlett, J.C. (1960), Geomorphology and forest ecology of a mountain region in the central Appalachians, U.S. Geological Surveyprofessional paper 347, 66p.
    Harris, J.R., Wilkinson, L., Grunsky, E.C. (2000), Effective use and interpretation of lithogeochemical data in regional mineral exploration programs: application of geographic information systems (GIS) technology, Ore Geology Reviews 16, pp.107-143.
    Johnson, K.A., Sitar, N. (1990), Hydrologic conditions leading to debris-flows initiation, Canadian Geotechnical Journal, Volume 27, pp.789-801.
    Kacprzyk, J. (1983), Multistage Decision-Making under Fuzziness: theory and applications. Verlag TUV Rheinland, Koln.
    Keefer, D.K. (1984), Landslides caused by earthquakes, Geological Society of America Bulletin, Volume 95, pp.406-421.
    Keefer, D.K., Wilson, R.C., Mark, R.K., Brabb, E.E., Brown, W.M., Ellen, S.D., Harp, E.L., Wieczorek, G.F., Alger, C.S., Zatkin, R.S. (1987), Applications of fuzzy logic to the prediction of soil erosion in a large watershed, Geoderma, Volume 86, pp.183-209.
    Koukis, G., Ziourkas, C. (1991), Slope instability phenomena in Greece: A statistical analysis, Bulletin of Engineering Geology and the Environment, Volume 43, Number 1, pp.47-60.
    Lee, C.T., Huang, C.C., Lee, J.F., Pan, K.L., Lin, M.L., Dong, J.J. (2008b) Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, pp.941-960.
    Lee, S., Choi, J., Min, K. (2002), Landslide susceptibility analysis and verification using the Bayesian probability model, Environmental Geology, Volume 43, Numbers 1-2, pp.120-131.
    Lee, S., Choi, J. (2004), Landslide susceptibility mapping using GIS and the weight-of-evidence model, International Journal of Geographical Information Science, Volume 18, Issue 8, pp.789 – 814.
    Lee, S., Talib, J.A. (2005), Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, Volume 47, Number 7, pp.982-990.
    Lee, S. (2007), Application and verification of fuzzy algebraic operators to landslide susceptibility mapping, Environmental Geology, Volume 52, Number 4, pp.615-623.
    Neuhäuser, B., Terhorst, B. (2007), Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany), Geomorphology, Volume 86, Issues 1-2, pp.12-24.
    Oh, H.J., Lee, S. (2010), Assessment of ground subsidence using GIS and the weights-of-evidence model, Engineering Geology, Volume 115, Issues 1-2, pp.36-48.
    Popescu, M.E. (2002), Landslide causal factors and landslide remediatial options, Keynote Lecture, Proceedings 3rd International Conference on Landslide, Slope Stability and Safe of Infra-Structure, Singapore, pp.61-81.
    Pradhan, B., Lee, S., Buchroithner, M.F. (2009), Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping, Volume 1, Numbers 1-2, pp.3-15.
    Pradhan, B. (2010), Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches, Journal of the Indian Society of Remote Sensing, Volume 38, Number 2, pp.301-320.
    Pradhan, B. (2011), Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia, Environmental Earth Sciences, Volume 63, Number 2, pp.329-349.
    Regmi, N.R., Giardino, J.R., Vitek, J.D. (2010), Assessing susceptibility to landslides: Using models to understand observed changes in slopes, Geomorphology, Volume 122, Issues 1-2, pp.25-38.
    Regmi, N.R., Giardino, J.R., Vitek, J.D. (2010), Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA Original Research Article, Geomorphology, Volume 115, Issues 1-2, pp.172-187.
    Rodriguez, C.E., Bommer, J.J., Chabdler, R.J. (1999), Earthquake-induced Landslides:1980-1997: Soil Dynamics and Earthquake Engineering, Volume 18, pp.325-346.
    Romero-Calcerrada, R., Luque, S. (2006), Habitat quality assessment using weights-of-evidence based GIS modelling: the case of picoides tridactylus as species indicator of the biodiversity value of the finnish forest, Ecological Modelling, Volume 196, Issues 1-2, pp.62-76.
    Sentz, K., Ferson, S. (2002), Combination of evidence in Dempster-Shafer theory, Report SAND2002-0835, Sandia National Laboratories, Albuquerque, New Mexico. 96 pp.
    Shortliffe, E.H., Buchanan, B.G. (1975), A model of inexact reasoning in medicine, Math Biosci, Volume 23, Number 3-4, pp.351-379.
    Spiegelhater, D., Kill-Jones, R.P. (1984), Statistical and knowledge-based approaches to clinical decision-support systems, with an application in gastroenterology, Journal of the Royal Statistical Society, Volume 147, Issue 1, pp.35-77.
    Tang, C., Zhu, J., Qi X., Ding J. (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China Original Research Article, Engineering Geology, In Press, Corrected Proof, 12p.
    Tangestani, M.H., Moore, F. (2001), Porphyry copper potential mapping using the weights-of-evidence model in a GIS, northern Shahr-e-Babak, Iran, Australian Journal of Earth Science, Volume 48, pp.695-701.
    Tangestani, M.H., (2004), Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchments area, SW Iran, Australian Journal of Earth Sciences 51, pp.439-450.
    Thiery, Y., Sterlacchini, S., Malet, J.P., Puissant, A., Maquaire, O. (2004), Strategy to reduce subjectivity in landslide susceptibility zonation by GIS in complex mountainous environments. In: Toppen, F., Prastacos, P. (eds), Proceedings of AGILE 2004: 7th AGILE Conference on Geographic Information Science. 29th April – 1st May 2004, Heraklion, Greece: pp.623-634.
    Thiery, Y., Malet, J.P., Sterlacchini, S., Puissant, A., Maquaire, O. (2007) Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, 92(1): 18 pp.
    Van Westen, C.J. (1993), Application of Geographic Information System to landslide hazard zonation, ITC-Publication No. 15, ITC, Enschede: 245.
    Van Westen, C. J., Rengers, N., Soeters, R. (2003), Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment, Natural Hazards, Volume 30, Number 3, pp.399-419.
    Varnes, D.J. (1978), Slope movement types and processes. In: Landslides : Analysis and Contril, Special Report- Transportation Research Board, National Research Council, 176, pp.11-33.
    Vijith, H., Madhu, G. (2008), Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS, Environmental Geology, Volume 55, Number 7, pp.1397-1405.
    Zimmermann, H.J., Zysno, P. (1980), Latent connectives in human decision making, Fuzzy Sets and Systems 4, pp.37-51.
    Zimmermann, H.J., Zysno, P. (1983), Decisions and evaluations by hierarchical aggregation of information, Fuzzy Sets and Systems 10, pp.243-266.

    下載圖示 校內:2013-09-09公開
    校外:2013-09-09公開
    QR CODE