簡易檢索 / 詳目顯示

研究生: 張沛翎
Chang, Pei-Ling
論文名稱: 粉體粒徑對gibbsite至α-Al2O3相轉換的影響
Particle size effects on gibbsite to α-Al2O3 phase transformation
指導教授: 顏富士
Yen, Fu-Su
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 140
中文關鍵詞: 三水鋁石氧化鋁相轉換粒徑
外文關鍵詞: Phase transformation, Alumina, Gibbsite, Prticle size
相關次數: 點閱:68下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三水鋁石(gibbsite, Al(OH)3)是工業上生產α-Al2O3的主要原料。其相轉換至α-Al2O3的過程複雜。起始粒徑、熱處理條件、氣氛等因素均會影響其相轉換路徑並經由不同過渡相。一般就粒徑的影響而言,已知有兩條相轉換路徑:粒徑<1μm的粒子循著gibbsite →χ-Al2O3 →κ-Al2O3 →α-Al2O3路徑,而粗粒(>1μm ) gibbsite則另會同時發生第二條路徑:gibbsite → boehmite →γ-Al2O3 →θ-Al2O3 →α-Al2O3。由於gibbsite至α-Al2O3相轉換屬於假形相轉換(pseudomorphic transformation),過去在這方面的觀察並不完整。本研究觀察gibbsite的假形特性與相轉換過渡相的關係。另外探討奈米級粒徑的gibbsite及χ-Al2O3,其相轉換路徑是否另有改變及其原因。研究分為兩部分:(1)觀察gibbsite結晶在相轉換過程,過渡相的微結構晶簇(drusy aggregates)及晶癖(crystal habit)發育特性,了解其與假形相轉換的關係。(2)觀察奈米級粒徑gibbsite及χ-Al2O3粉體的相轉換過程。
    研究結果發現,gibbsite在相轉換過程的晶癖發育特殊。其六方最密堆積(hexagonal close packing)晶格(001)面在相變為χ-及κ-Al2O3過程循原有層狀晶格發育為片狀層層堆疊結構。厚度由χ-相的10 nm成長至κ-相的40~100 nm。此時片片間形成間距,且此片面均仍為(001)面。在轉為α-相之後則發育為蠕蟲狀(vermicular)結構,單晶截面直徑約200 nm。同時層狀結構漸不明顯。在此片體平面上的晶簇變化,χ-Al2O3片體具有尺寸約10 nm的微晶微孔,在轉變為κ-相後此微孔消失,κ-Al2O3並具有沿{110}的雙晶現象。Gibbsite→χ-Al2O3→κ-Al2O3→α-Al2O3具有的假形相轉換特性,可能係因粒體內部呈現規則的晶簇外型改變,可平衡因比重升高而需產生的體積收縮,使得粒體外型維持不變。
    當gibbsite粒徑<200 nm時,相轉換將循著gibbsite→χ-Al2O3 →α-Al2O3路徑,原本相轉換過程中的κ-Al2O3過渡相將不出現。以不同粒徑χ-Al2O3作觀察,當χ-Al2O3粒徑小至~40 nm以下,也有相同現象。χ→α-Al2O3相轉換的α-Al2O3初生成晶徑約為30 nm,可能為一對一的相轉換。平均粒徑~40 nm的χ-Al2O3粉末也具有最低的α-相生成活化能。

    Gibbsite (Al(OH)3) is the major raw material of industrial production of α-alumina, the routes of transformation from gibbsite to α-Al2O3 were affected by the particle size, heating rate, pressure and water vapour. It was known that two routes appeared as a result of particle size effect, gibbsite →χ-Al2O3 →κ-Al2O3 →α-Al2O3 take place when particle size <1μm. For coarse particle (>1μm), a second route take place parallelly, gibbsite → boehmite →γ-Al2O3 →θ-Al2O3 →α-Al2O3. Gibbsite to α-Al2O3 transformation displaying characteristics of pseudomorphic transformation, but the study so far was not sufficient. In this study, the relationships between transition phases and pseudomorphic characteristic during transformation of gibbsite were examined. Altered transformation route indused by size effects were also discussed. The investigation including two portions: (i) developments of drusy aggregates and crystal habit characteristic during transformation of gibbsite crystal, and the relationship with pseudomorphic transformation. (ii) phase transformation of nano-sized gibbsite and χ-Al2O3 powders.
    It was found that a particular crystal habit development during phase transformation of gibbsite. The layered lattice of hexagonal close packing of oxygen ions along (001) was continued to develop platelet-stacking structures after transforming to χ- and κ-Al2O3. The thickness of χ-platelet was 10 nm and then grew up to 40~100 nm for κ-platelet. The (001) basal face of platelets were remained and stacked with an interval space with each other. Vermicular structure appeared after transforming to α-phase and eliminated the lamellar texture gradually, the cross section of single crystal was about 200 nm. The developments of drusy aggregates on the plane varied with the formation of transition phases, χ-platelet possessed nanocrystallites and pores of about 10 nm in size, the pores were eliminated from the κ-phase formation, a 120° twinning operation of κ-Al2O3 domains along {110} twin plane can be easily observed. The mechanism of pseudomorphic transformation of gibbsite→χ-Al2O3→κ-Al2O3→α-Al2O3 may result from a self-assembly evolution of nano-scaled crystal habit occurring in the interior of gibbsite crystals, that balanced the volume reduction due to increase in density during the transformation, thus remaining the externals of particle.
    Gibbsite→χ-Al2O3 →α-Al2O3 transformation route occurred with skippingκ-Al2O3 when particle size of gibbsite less than 200 nm. Same phenomenon occurred in χ-Al2O3 powders, direct transformation from χ-Al2O3 to α-Al2O3 took place when particle size of χ-Al2O3 less then 40 nm. The formation of α-Al2O3 nucleus from χ→α-Al2O3 transformation may carry out from one χ-Al2O3 particle to one α-Al2O3 crystallite, the crystal size of α-Al2O3 nucleus was about 30 nm. χ-Al2O3 powder with mean particle size about 40 nm possessed the lowest α-Al2O3 formation energy.

    摘 要 I Abstract III 致 謝 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 粒徑大小對相轉換的影響 1 1-2 氧化鋁的應用及發展 2 1-3 由gibbsite製作氧化鋁 3 1-4 Gibbsite的熱反應 3 1-5 研究動機 5 1-6 研究目的 5 第二章 理論基礎與前人研究 7 2-1 晶體之相轉換 7 2-1-1 相轉換分類及機制 7 2-1-2 多形體的相轉換(polymorphic transformation) 13 2-2 相轉換的晶徑效應 15 2-2-1 相轉換臨界晶徑 15 2-2-2 粒徑大小對相穩定性的影響 15 2-2-3 相轉換過渡相不出現 16 2-3 Gibbsite及氧化鋁多形體的晶體結構 18 2-3-1 Gibbsite 18 2-3-2 χ-Al2O3 23 2-3-3 κ-Al2O3 24 2-3-4 α-Al2O3 28 2-4 Gibbsite的相轉換 30 2-4-1 Gibbsite的脫水及相轉換路徑 30 2-4-2 假形相轉換(pseudomorphic transformation) 34 2-4-3 χ-、κ-及α-Al2O3的晶體結構相似性 35 2-4-4 熱力學性質 35 2-5 α-Al2O3的生成 38 2-5-1 成核成長相轉換 38 2-5-2 α-Al2O3的穩定晶徑 40 第三章 實驗方法及步驟 42 3-1 實驗原料 42 3-2 實驗設計 42 3-3 實驗流程及樣品製作 43 3-3-1 χ→κ→α-Al2O3相轉換微結構觀察 43 3-3-2 粒徑對gibbsite及χ-Al2O3相轉換路徑的影響 47 3-4 特性分析 53 第四章 χ→κ→α-Al2O3相轉換微結構觀察 57 4-1 粒體外觀及片狀晶癖發育 57 4-2 過渡相片體的觀察 63 4-2-1 χ-Al2O3 63 4-2-2 κ-Al2O3 70 4-3 相轉換的晶格關係 77 4-4 結論 79 第五章 粒徑對gibbsite及χ-Al2O3相轉換路徑的觀察 80 5-1 Gibbsite粒徑對其相轉換的影響 80 5-2 χ-Al2O3粒徑對其相轉換的影響 87 5-2-1 不同粒徑χ-Al2O3起始粉末的特性 87 5-2-2 χ-Al2O3粒徑對κ-及α-Al2O3生成的影響 92 5-3 χ→α-Al2O3相轉換 99 5-3-1 χ→α-Al2O3相轉換粒徑及α-Al2O3的初生成晶徑 99 5-3-2 α-Al2O3生成活化能的改變及相轉換動力學 105 5-3-3 起始粉體外型與κ-Al2O3不出現的關係 109 5-4 結論 112 第六章 綜合討論 113 6-1 起始粉體粒徑對相轉換粒體外觀及晶癖發育的影響 113 6-2 粒徑對gibbsite相轉換過程的影響 115 6-3 α-Al2O3的臨界晶徑及穩定晶徑 118 第七章 總結論 121 參考文獻 123 附 錄 129 Appendix I 三種gibbsite原料的基本資料 130 Appendix II 動力學數據 135 自 述 138

    1. J. F. Banfield and A. Navrotsky, Reviews in Mineralogy and Geochemistry, Volume 44, Nanoparticles and The Environment, Mineralogical Society of America (2001).
    2. A. A. Gribb and J. F. Banfield, “Particle Size Effects on Transformation Kinetics and Phase Stability in Nanocrystalline TiO2” Am. Mineral. 82 717-728 (1997).
    3. H. I. Hsiang and F. S. Yen, “Effect of Crystallite Size on the Ferroelectric Domain Growth of Ultrafine BaTiO3 Powders” J. Am. Ceram. Soc. 79 [4] 1053-1060 (1996).
    4. E. Erdem, H. C. Semmelhack, R. Böttcher, H. Rumpf, J. Banys, A. Matthes, H. J. Gläsel, D. Hirsch and E. Hartmann, “Study of the Tetragonal-to-Cubic Phase Transformation in PbTiO3 Nanopowders” J. Phys.: Condens. Matter. 18 3961-3874 (2006).
    5. R. C. Garvie, “Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect” J. Phys. Chem. 69 1238-1243 (1965).
    6. Y. L. Zhang, X. J. Jin, Y. H. Rong, T. Y. Hsu, D. Y. Jiang and J. L. Shi, “The Size Dependence of Structural Stability in Nano-sized ZrO2 Particles” Materials Science and Engineering A, 438–440 399–340 (2006).
    7. K. Hamano, T. Sato, and Z. Nakagawa, “Properties of mullite powder prepared by co-precipitation and microstructure of fires bodies,” Yogyo-Kyokaishi, 94 818-822 (1986).
    8. M. D. Sacks and J. A. Pask, “Sintering of mullite- containing materials: I, effect of composition,” J. Am. Ceram. Soc., 65 65-70 (1982).
    9. K. Nishu, T. Yokoyama, T. Watanabe, and T. Tarutani, “Characterization of amorphous aluminosilicate formed by adsorption of silicic acid on aluminium hydroxide,” Abstracts of the 27th Symposium on the Basic Science of Ceramics, Paper No. 1B08, Ceramic Society of Japan, Tokyo (1989).
    10. 溫惠玲,“由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換”,國立成功大學資源工程研究所,博士論文,中華民國89年1月。
    11. H. L. Wen and F. S. Yen, “Growth Characteristics of boehmite-derived ultrafine theta and alpha-alumina particles during phase transformation,” J. Cryst. Growth, 208, 696-708 (2000).
    12. P. L. Chang, F. S. Yen, K. C. Cheng, and H. L. Wen, “Examinations on the Critical and Primary Crystallite Sizes during θ- toα-Phase Transformation of Ultrafine Alumina Powders,” Nano Letters, 1 [5] 253-261 (2001).
    13. F. S. Yen, H. L. Wen, and Y. T. Hsu, “Crystallite size growth and the derived dilatometric effect during θ- toα-phase transformation of nano-sized alumina powders,” J. Cryst. Growth, 233 761-773 (2001).
    14. F. S. Yen, M. Y. Wang, and J. L. Chang, “Temperature reduction of θ-toα-Phase Transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from Boehmite,” J. Cryst. Growth, 236 197-209 (2002).
    15. F. S. Yen, J. L. Chang, and P. C. Yu, “Relationships between DTA and DIL characteristics of nano-sized alumina powders duringθ- toα-phase transformation,” J. Cryst. Growth, 246 90-98 (2002).
    16. F. S. Yen, H. S. Lo, H. L. Wen, and R. J. Yang, “θ- to α-Phase Transformation subsystem induced by α-Al2O3-seeding in boehmite-derived nano-sized alumina powders,” J. Cryst. Growth, 249 283-293 (2003).
    17. L. D. Hart and E. Lense, Alumina Chemicals Science and Technology Handbook, The American Ceramic Society Inc. Westerville, Ohio (1990).
    18. 黃啟祥,林江財,“氧化鋁”,陶瓷技術手冊(下),683-685,中華民國產業科技發展協進會與中華民國粉末冶金協會出版。民國83年7月。
    19. K. Wefers and G. M. Bell, “Oxides and Hydroxides of Alumina,” Technical Paper No. 19, Alcoa Research Laboratories (1972).
    20. I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc., 81 1995-2012 (1998).
    21. J. F. Brown, D. Clark, and W. W. Elliott, “Thermal Decomposition of the Alumina Trihydrate, Gibbsite,” J. Chem. Soc. (London), 84-88 (1953).
    22. J. H. de Boer, J. M. H. Fortuin, and J. J. Steggerda, “The Dehydration of Alumina Hydrates,” Proc. Kon. Ned. Akad. Werensch., Amsterdam, B57 170-180 (1954).
    23. R. Tertian and D. Papée, “Thermal and Hydrothermal Transformations of Alumina,” J. Chim. Phys., 55 341-353 (1958).
    24. H. Achenbach, “Thermal Decomposition of Synthetic Hydrargillite (Gibbsite),” Chem. Erde., 6 307-356 (1931).
    25. V. R. Damerell, F. Hovorka, and W. E. White, “Surface Chemistry of Hydrates. II. Decomposition Without Lattice Rearrangments,” J. Phys. Chem., 36 1255-1267 (1932).
    26. A. Putnis, Introduction to mineral sciences, pp. 375, Cambridge University Press, New York, 1992.
    27. A. Putnis and J. D. C. McConnell, Principles of Mineral Behaviour, Elsevier, New York (1980).
    28. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall, 2nd Ed., London (1992).
    29. C. N. R. Rao and K. J. Rao, Phase Transformations in Solids: An Approach to the Study of the Chemistry and Physics of Solids, McGraw-Hill, New York (1978).
    30. J. M. Criado, M. J. Dianez, F. Gotor, M. Mundl, S. Ramos, and J. D. Cerro, “Correlation betwween Synthesis Condition, Coherently Diffeacting Domain Size and Cubic Phase Stabilization in Barium Titanate,” Ferroelectrics Lett., 14 79-84 (1994).
    31. K. Saegusa, W. E. Rhine, and H. K. Bowen, “Effect of Composition and Size of Crystallite on Crystal Phase in Lead Barium Titanate,” J. Am. Ceram. Soc., 76 1505 (1993).
    32. F. S. Yen, C. T. Chang, and Y. H. Chang, “Characterization of Barium Titanium Oxalaye Tetrahydrate,” J. Am. Ceram. Soc., 73 3422 (1990).
    33. 向性一,“鈦酸鋇粉末鐵電區與介電性質之研究”,國立成功大學礦冶及材料科學研究所,博士論文,中華民國84年6月。
    34. R. Srinivasan, L. Rice, and B. H. Davis, “Critical Particle Size and Phase Transformation in Zirconia: Transmission Electron Microscopy and X-ray Diffraction Studies,” J. Am. Ceram. Soc., 73 3528-30 (1990).
    35. J. D. Lin and J. G. Duh, “The Use X-ray Line Profile analysis to Investigate Crystallite Size and Microstrain for Zirconia Powders,” J. Mater. Sci., 32 5779-90 (1985).
    36. A. H. Heuer, N. Claussen, W. M. Kriven, and M. Ruhle, “Stability of Tetragonal ZrO2 particles in Ceramic Matrices,” J. Am. Ceram. Soc., 65 642-50 (1982).
    37. 楊榮澤,“20至100 nm α-Al2O3經粒的熱力學特性”,國立成功大學資源工程研究所,碩士論文,中華民國92年7月。
    38. K. J. D. MacKenzie, J. Temuujin, M.E. Smith, P. Angerer, Y. Kameshima, “Effect of Mechanochemical Activation on the Thermal Reactions of Boehmite (γ-AlOOH) and γ-Al2O3,” Thermochimica Acta, 359 87-94 (2000).
    39. R. M. Torres Sánchez, A. Boix, R.C. Mercader, “Grinding Assistance in the Transformation of Gibbsite to Corundum,” J. Mater. Res., 17 [3] 712-717 (2002).
    40. J. Kano, S. Saeki, F. Saito, M. Tanjo, S. Yamazaki, “Application of Dry Grinding to Reduction in Transformation Temperature of Aluminum Hydroxides,” Int. J. Miner. Process., 60 91-100 (2000).
    41. 林天鈞,“前導物之粒徑對由Gibbsite獲得α-Al2O3過程之影響”,國立成功大學資源工程研究所,碩士論文,中華民國94年6月。
    42. V. J. Ingram-Jones, R. C. T. Slade, T. W. Davies, J. C. Southern, and S. Salvador, “Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcinations and of particle-size effects,” J. Mater. Cjem., 6 [1] 73-79 (1996).
    43. K. Yamada, T. Harato, S. Hamano, and K. Horinouchi, “Dehydration products of gibbsite in rotary kiln and stational calciner,” Light Met., 157-171 (1984).
    44. T. Kogure, “Dehydration Sequence of Gibbsite by Electron-Beam Irradiation in a TEM,” J. Am. Ceram. Soc., 82 [3] 716-20 (1999).
    45. W. H. Gitzen, Alumina as a Ceramic Material, pp. 14-38. American Ceramic Society, Columbus, OH, (1970).
    46. M. Inoue, H. Kominami, and T. Lnui, “Thermal Transformation of χ-Alumina Formed by Thermal Decomposition of Aluminum Alkoxide in Organic Media,” J. Am. Ceram. Soc., 75 [9] 2597-98 (1992).
    47. O. Mekasuwandumrong, P. L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, “Synthesis of thermally stable micro spherical χ-alumina by thermal decomposition of alumium isopropoxide in mineral oil,” Inorg. Chem. Commun., 6 930-934 (2003).
    48. O. Mekasuwandumrong, P. Praserthdam, M. Inoue, V. Pavarajarn, and W. Tanakulrungsank, “Phase transformation behavior of nanocrystalline χ-alumina powder obtained by thermal decomposition of AIP in inert organic solvent,” J. Mater. Sci., 39 2417-21 (2004).
    49. O. Mekasuwandumrong, H. Kominami, P. Praserthdam, and M. Inoue, “Synthesis of Thermally Stable χ-Alumina by Thermal Decomposition of Aluminum Isopropoxide in Toluene,” J. Am. Ceram. Soc., 87 [8] 1543-1547 (2004).
    50. O. Mekasuwandumrong, V. Pavarajarn, M. Inoue, and P. Praserthdam, “Preparation and phase transformation behavior of χ-alumina via solvothermal synthesis,” Mater. Chem. Phy., 100 445-450 (2006).
    51. Y. M. Chiang, D. P. Birnie III, and W. D. Kingery, Physical Ceramics – Principles for Ceramic Science and Engineering, John Wiley & Sons, New York (1997).
    52. C. Sweegers, H. C. de Coninck, H. Meekes, W. J. P. van Enckevort, I. D. K. Hiralal, and A. Rijkeboer, “Morphology, evolution and other characteristics of gibbsite crystals growth from pure and impure aqueous sodium aluminate solutions,” J. Cryst. Growth, 233 567-582 (2001).
    53. B. C. Lippens and J. J. Steggerda, “Active Alumina,” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. G. Linsen Ed., Academic Press, New York, 171-211 (1970).
    54. H. Saalfeld, “The Structure of Gibbsite and the Intermediate Products of Its Dehydration,” N. Jb. Miner. Abh., 95 1-87 (1960).
    55. H. D. Megraw, Crystal Structures: A Working Approach. Saunders, Philadelphia, London, Toronto (1973).
    56. H. C. Stumpf, A. S. Russel, J. W. Newsome, and C. M. Tucker, “Thermal Transformations of Aluminas and Alumina Hydrates,” Ind. Eng. Chem., 42 1398-1403 (1950).
    57. G. W. Brindley and J. O. Choe, “The Reaction Series, Gibbsite→Chi Alumina→Kappa Alumina→Corundum” The Am. Mineral., 46 771-785 (1961).
    58. B. Singh and R. J. Gilkes, “The Natural Occurrence of χ-Alumina in Lateritic Pisolites,” Clay Minerals, 30 39-44 (1995).
    59. M. Okumiya, G. Yamaguchi, O. Yamada, and S. Ono, “The Formation of κ- and κ’-Al2O3 from the Dehydration of Tohdite 5Al2O3‧H2O,” Bull. Chem. Soc. Jpn., 44 418-423 (1971).
    60. P. Liu and J. Skogsmo, “Space-Group Determination and Structure Model for κ-Al2O3 by Convergent-Beam Electron Diffraction (CBED),” Acta Cryst., B47 425-433 (1991).
    61. M. Halvarsson, V. Langer, and S. Vuorinen, “X-ray Powder Diffraction Data for κ-Al2O3,” Powder Diffraction, 14 (1), March (1999).
    62. H. L. Gross and W. Mader, “On the crystal structure of κ-alumina,” Chem. Commun., 1 55-56 (1997).
    63. Y. Yourdshahyan, C. Ruberto, M. Halvarsson, L. Bengtsson, V. Langer, B. I. Lundqvist, S. Ruppi, and U. Rolander, “Theoretical Structure Determination of a Complex Material:κ-Al2O3,” J. Am. Ceram. Soc., 82 [6] 1365-80 (1999).
    64. O. Glemser and G. Rieck, Z. Angew. Chem., 68 182 (1956).
    65. C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy, 21st Ed. John Wiley & Sons, New York (1993).
    66. J. D. Dana, R. V. Dana & E. S. Dana, Dana’s New Mineralogy, 8th Ed., Wiley, New York (1997).
    67. B. Ollivier, R. Retoux, P. Lacorre, D. Massiot, and G. Férey, “Crystal structure of κ-alumina: an X-ray powder diffraction, TEM and NMR study,” J. Mater. Chem., 7, 1049-1056 (1997).
    68. H. S. Santos, T. W. Campos, P. S. Santos, and P. K. Kiyohara, “Thermal Phase Sequences in Gibbsite/Kaolinite Clay: Electron Microscopy Studies,” Ceram. Int., 31 1077-1084 (2005).
    69. I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc., 81 1995-2012 (1998).
    70. R. A. Alberty and R. J. Silbey, Physical Chemistry, John Wiley & Sons, 1st Ed. New York (1992).
    71. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr. Fruip, R. R. McDonalod, and A. N. Syverud, “JANAF Thermalchemical Tables,” 3rd Ed. Am. Chem. Soc. (1985).
    72. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley & Sons, New York (1976).
    73. F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina,” J. Am. Ceram. Soc., 65 [9] 442-446 (1992).
    74. P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase transformation in Alumina,” J. Mater. Sci., 11 1794-06 (1976).
    75. R. J. Yang, P. C. Yu, C. C. Chen, and F. S. Yen, “Growth Thermodynamics of Nano-scaled Alpha-Alumina Crystallites,” Cryst. Growth Des., under review.
    76. B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Addison-Wesley, London (1978).
    77. C. H. Bamford and C. F. H. Tipper, Reactions in the Solid State, Comprehensive Chemical Kinetics, Vol.22, Else. Sci. Pub. Co., New York (1980).
    78. A. S. Russell, et al., “Alumina Properties,” Technical paper No. 10, Aluminum Co. of American, Pittsburgh, Pa. (1956).
    79. A. S. Edelstein and R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol, UK and Philadelphia, USA, (1996).

    下載圖示 校內:立即公開
    校外:2008-08-27公開
    QR CODE