簡易檢索 / 詳目顯示

研究生: 梁加宏
Liang, Chia-Hung
論文名稱: 溶膠凝膠法製備TiO2/ITO光電極及其在產氫程序上之應用
Preparation of Sol-gel Derived TiO2/ITO Photoelectrode and Application in Hydrogen Evolution Process
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 120
中文關鍵詞: 光電化學二氧化鈦溶膠凝膠法光電極產氫程序
外文關鍵詞: titanium dioxide, hydrogen evolution process, photoelectrode, sol-gel method, photo-electrochemical
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在製備具光敏性之二氧化鈦/ITO (TiO2/ITO)電極,以進行光電分解水產製氫之反應,研究中,首先以醇氧化鈦(Ti(OBun)4)為前驅鹽與雙氧水溶液反應,產生TiO2溶膠,再以旋轉塗佈法在ITO玻璃基板上塗覆TiO2薄膜經鍛燒而製成電極。其次,針對電極之製作,並藉XRD、SEM、BET及UV/VIS吸收光譜等儀器來進行薄膜特性分析。並針對薄膜製備條件包含旋轉塗佈次數及鍛燒溫度,來加以探討。另外,以TiO2/ITO作為光陽極組裝光電化學反應(PEC)系統以測試光電極之活性,並探討PEC之反應溫度、電解液種類與濃度對光電流轉換效率及產氫速率之影響。
    實驗結果顯示,以溶凝膠法所製備之TiO2膜,經300-600oC鍛燒1h後,主要具有銳鈦礦(anatase)結構。在照光下(低壓汞燈,極板照度1.05mW/cm2),塗覆一層(TiO2膜厚約0.2μm) TiO2溶膠,經600oC鍛燒所得TiO2/ITO電極之飽和光電流(0.326 mA/cm2)為最大,其光電流轉換效率為2.4%,最大產氫速率約為0.075 mL/cm2-h。
    另外,本研究中合成之電極與商用P25-TiO2/ITO比較,結果發現實驗,合成之TiO2/ITO電極具較高之光電化學轉換特性。研究中並嘗試含浸鎳於TiO2/ITO上以製備Ni-TiO2/ITO電極,初步實驗結果發現,鎳微粒會抑制光電子由TiO2至ITO之傳遞,而導致其光電活性下降。

    In this work, photosensitive TiO2/ITO electrodes were prepared for the production of hydrogen via PEC reaction. Experimentally, TiO2 sol was firstly prepared by sol-gel method starting from tetrabutyl orthotitanate (Ti(OBun)4) reacted with hydrogen peroxide. Subsequently, TiO2/ITO electrodes were obtained by spin-coating the TiO2 sol following by calcination. The preparation conditions including number of coating and calcination temperature were investigated. The XRD, SEM, BET and UV/VIS absorption spectroscopic techniques were used for the characterization of TiO2/ITO electrodes. Furthermore, PEC cells were constructed for measuring the activities of prepared TiO2/ITO electrodes. The effects of reaction temperature as well as the nature and concentration of electrolytes on both hydrogen production rate and photoefficiency conversion of PEC system were also investigated.
    The experimental results showed that the sol-gel derived TiO2 layers calcined at 300-600 oC were mainly anatase structure. From the result of PEC reactions under UV illumination (λmax=253.7 nm), it found that the TiO2/ITO photoelectrode (calcined at 600oC, thickness of TiO2 layer of about 0.2 μm) demonstrated a maximum saturation current (0.326 mA/cm2) with a high PEC conversion efficiency of 2.39%. In this case, the hydrogen evolution rate is about 0.075 mL/cm2h.
    As compared with the P25-TiO2/ITO electrode prepared starting from the commercial Degussa P25-TiO2, the sol-gel synthesized TiO2/ITO electrode demonstrated much higher PEC conversion efficiency. In addition, nickel-loaded TiO2/ITO (Ni-TiO2/ITO) electrode was prepared by impregnation technique for trying to enhance the light absorption in visible region. However, the rudimentary results showed the photoactivity of this electrode was reduced because the loaded nickel particles on TiO2 could trap electrons and thus led to the depression of photo-induced electrons transferred from TiO2 to ITO.

    Page 摘要……………………………………………………………………Ⅰ ABSTRACT………………………………………………………………Ⅲ LIST OF CONTENTS……………………………………………………Ⅹ LIST OF TABLES……………………………………………………ⅩⅢ LIST OF FIGURES……………………………………………………ⅩⅣ CHAPTER 1 INTRODUCTION………………………………………………1   1.1 Hydrogen……………………………………………………1   1.2 Hydrogen generation methods……………………………2    1.2.1 Direct thermal decomposition of water…………3    1.2.2 Thermo-chemical hydrogen production……………3    1.2.3 Biological and photo-biological processes……4    1.2.4 Electrolysis of water………………………………4    1.2.5 Photo-electrochemical hydrogen generation……5   1.3 Titanium oxide……………………………………………6    1.3.1 Preparation……………………………………………7    1.3.2 Photocatalytic property……………………………8    1.3.3 Applications…………………………………………8   1.4 Objectives…………………………………………………9 CHAPTER 2 THEORETICAL……………………………………………25   2.1 Sol-gel method……………………………………………25     2.1.1Mechanism…………………………………26   2.2 Principles of photo-electrochemical hydrogen        generation………………………………………………28     2.2.1 Band model representation of PEC……………29     2.2.2 Properties of photoelectrodes………………30     2.2.3 Principles for catalysis of photoelectrode32     2.2.4 Conversion efficiency of PEC…………………33 CHAPTER 3  EXPERIMENTAL……………………………………………38   3.1 Chemicals and Materials………………………………38    3.1.1 Chemicals……………………………………………38  3.1.2 Materials……………………………………………39   3.2 Apparatus and Analyses…………………………………39    3.2.1 Instruments…………………………………………39    3.2.2 Analyses………………………………………………40   3.3 Preparation of TiO2/ITO electrodes…………………42    3.3.1 Pretreatment of ITO substrate…………………43    3.3.2 TiO2/ITO preparation………………………………43   3.4 Photoelectrochemical systems…………………………44    3.4.1 Design and fabrication of reactor……………44    3.4.2 Procedures……………………………………………45    3.4.3 Collection of hydrogen……………………………45    3.4.4 Calculation of conversion efficiency…………46 CHAPTER 4 RESULTS AND DISCUSSION………………………56   4.1 Characterization of TiO2 and TiO2/ITO……………56    4.1.1 Stability of PPT sol………………………………56    4.1.2 Fourier transform infrared spectroscopy          analysis………………………………………………57    4.1.3 XRD analysis…………………………………………57    4.1.4 UV/VIS absorption analysis………………………58    4.1.5 SEM analysis…………………………………………59    4.1.6 BET surface area analysis………………………60   4.2 PEC activity of TiO2/ITO electrodes………………60     4.2.1 PEC activity of sol-gel derived TiO2/ITO        electrodes……………………………………………61      4.2.1.1 Effect of TiO2 layer thickness…………61      4.2.1.2 Effect of calcination temperature………62     4.2.1.3 Effect of applied bias……………………63      4.2.1.4 Effect of electrolyte………………………64     4.2.2 PEC activity of P25-TiO2/ITO electrodes…65     4.2.3 PEC activity of Ni-loaded TiO2/ITO            electrodes…………………………………………66      4.2.3.1 A. Photocurrent in the ultraviolet            region…………………………………………66      4.3.3.2 B. Photocurrent in the visible              region…………………………………………67   4.3 Photoefficiency and hydrogen evolution……………67     4.3.1 Effect of calcination temperature…………68     4.3.2 Effect of applied bias…………………………68     4.3.3 Effect of electrolyte temperature…………69 CHAPTER 5 CONCLUSIONS AND SUGGESTION………………………111   5.1 Conclusions………………………………………………111   5.2 Suggestions………………………………………………112 REFERENCE……………………………………………………………114

    1. S. C. Moon, Y. Matsumura, M Kitano, M Matsuoka ,and M Anpo, “Hydrogen production using semiconducting oxide photocatalysts”, Research on Chemical Intermediates, 29, 233-256, 2003.
    2. T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Material-related aspects”, International Journal of Hydrogen Energy, 27, 991-1022, 2002.
    3. P. Kruger, “Electric power requirement for large-scale production of hydrogen fuel for the world vehicle fleet”, International Journal of Hydrogen Energy, 26, 1137-1147, 2001.
    4. P. Kruger, “Electric power required in the world by 2050 with hydrogen fuel production - Revised ”, International Journal of Hydrogen Energy, 30, 1515-1522, 2005.
    5. A. Steinfeld, “Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions”, International Journal of Hydrogen Energy, 27, 611-619, 2002.
    6. H. Ohya, M. Yatabe, M. Aihara, Y. Negishi,and T. Takeuchi, “Feasibility of hydrogen production above 2500K by direct thermal decomposition reaction in membrane reactor using solar energy”, International Journal of Hydrogen Energy, 27, 369-376, 2002.
    7. A. Kogan, “Direct solar thermal splitting of water and on-site separation of the products-IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor”, International Journal of Hydrogen Energy, 25, 1043-1050, 2000.
    8. W. Grasse, C. E. Tyner,and A. Steinfeld, “International R&D collaboration in developing solar thermal technologies for electric power and solar chemistry: The solarPACES program of the international energy agency (IEA)”, Journal De Physique, IV 9, 9-15, 1999.
    9. P. Zhang, and B. Yu, J. Chen, “Study on the hydrogen production by thermochemical water splitting”, Progress in Chemistry, 17, 643-650, 2005.
    10. A. J. Appleby, “Efficiencies of electrolytic and thermochemical hydrogen production”, Nature, 253, 257-258, 1975.
    11. T. Kodama, Y. Kondoh, R. Yamamoto, H. Andou, and N. Satou, “Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite”, Solar Energy, 78, 623–631, 2005.
    12. J. W. van Groenestijna, J. H. O. Hazewinkelb, and M. Nienoorda, P. J. T. Bussmann, “Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range”, International Journal of Hydrogen Energy, 27, 1141-1147, 2002.
    13. N. Basak, and D. Das, “The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art”, World Journal of Microbiology and Biotechnology, 23, 31–42, 2007.
    14. A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor Electrode”, Nature, 238, 37-39, 1972.
    15. A. Fujishima, K. Kohayakawa, and K. Honda, “Formation of hydrogen gas with an electrochemical photo-cell”, Journal of the Electrochemical Society, 48, 1041-1402, 1975.
    16. S. U. M. Khan, M. A. Shahry, and W. B. Ingler Jr., “Efficient photochemical water splitting by a chemically modified n-TiO2”, Science, 297, 2243-2245, 2002.
    17. G. K. Mor, K. Shankar, M Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced photocleavage of water using titania nanotube arrays”, Nano Letters, 5, 191-195, 2005.
    18. X. Quan, S. G. Yang, X. L. Ruan, and H. Zhao, “Preparation of titania nanotubes and their environmental applications as electrode”, Environmental Science and Technology, 39, 3770-3775, 2005.
    19. Y. Xie, “Photoelectrochemical application of nanotubular titania photoanode”, Electrochimica Acta, 51, 3399-3406, 2006.
    20. J. H. Park, S. Kim, and A. J. Brad, “Novel carbon-doped TiO2 nanotube arrys with high aspect ratios for efficient solar water splitting”, Nano letters, 6, 24-28, 2006.
    21. G. Dawei, A. G. Craig, and K. V. Oomman, C. Zhi, H. Wenchong, C. D. Elizabeth, “Titanium oxide nanotube arrays prepared by anodic oxidation”, Journal of Materials Research, 16, 3331-3334, 2001.
    22. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, 27, 991-1022, 2002.
    23. D. Mardare, M. Tasca, M. Delibas, and G. I. Rusu, “On the structural properties and optical transmittance of TiO2 sputtered thin films”, Applied Surface Science, 156, 200–206, 2000.
    24. C.C. Lee, “Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition”, Applied Optics, 44, 2996-3000, 2005.
    25. E. Halary, G. Benvenuti, F. Wagner, and P. Hoffmann, “Light induced chemical vapor deposition of titanium oxide thin films at room temperature”, Applied Surface Science, 154–155, 146–151, 2000.
    26. K. L. Siefering, and G. L. Griffin, “Growth kinetics of CVD TiO2: Influence of carrier gas”, Journal of the Electrochemical Society, 137, 1206-1208, 1990.
    27. T. Nishide, and F. Mizukami, “Effect of ligands on crystal structures and optical properties of TiO2 prepared by sol-gel processes”, Thin Solid Films, 353, 67-71, 1999.
    28. H. Lin, H. Kozuka, and T. Yoko, “Preparation of TiO2 films on self-assembled monolayers by sol-gel Method”, Thin Solid Films, 315, 111–117, 1998.
    29. Y. Lei, L. D. Zhang, and J. C. Fan, “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3”, Chemical Physics Letters, 338, 231-236, 2001.
    30. S. Zhang, Y. F. Zhu, and D. E. Brodie, “Photoconducting TiO2 prepared by spray pyrolysis using TiCl4”, Thin solid Films, 213, 265-270, 1992.
    31. J. J. Ebelmen, Ann., 57, 331, 1846.
    32. W. Geffcken, E. Berger, and German patent 736 411, 1937.
    33. H. Schroeder, “Dip coating of alumina films by the sol-gel method”, Physics of Thin Films, 5, 87-141, 1969.
    34. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surface: Principles, Mechanisms, and Selected results”, Chemical Reviews, 95, 735-758, 1995.
    35. T. Yonezawa, H. Matsune, and T. Kunitake, “Layered nanocomposite of close-packed gold nanoparticles and TiO2 gel Layers”, Chemistry of Materials, 11, 33-35, 1999.
    36. Z. Zainal, N. Saravanan, and N. S. Fang, “Electrochemical assisted photodegradation of oxalate ions using sol-gel coated TiO2 on ITO glass”, Materials Science and Engineering B, 111, 57-63, 2004.
    37. J. A. Byrne, A. Davidson, P. S. M. Dunlop, and B.R. Eggins, “Water treatment using nano-crystalline TiO2 electrodes”, Journal of Photochemistry and Photobiology A: Chemistry, 148, 365-374, 2002.
    38. A. Blozkow, I. Csolleova, and V. Brezova, “Effect of light sources on the phenol degradation using Pt/TiO2 photocatalysts immobilized on glass fibres”, Journal of Photochemistry and Photobiology A: Chemistry, 113, 251-256, 1998.
    39. J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, and M. Rouse, “Immobilisation of TiO2 powder for the treatment of polluted water”, Applied Catalysis B: Environmental, 17, 25-36, 1998.
    40. C. E. Thomas, B. D. James, and F. D. Jr. Lomax, “Market penetration scenarios for fuel cell vehicles”, International Journal of Hydrogen Energy, 23, 949-966, 1998.
    41. J. Nowotny, C. C. Sorrell, T. Bak, and L. R. Sheppard, “Solar-hydrogen: Unresolved problems in solid-state science”, Solar Energy, 78, 593–602, 2005.
    42. U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, 48, 53-229, 2003.
    43. Y. Fu, and W. Cao, “The effect of potential on the electron-trapping process of surface states in nanocrystalline TiO2 film electrode”, Journal of Applied Physics, 100, 084324 1-6, 2006.
    44. C. Jeffrey Brinker, and G. W. Scherer, Sol-gel science, Academic Press, Inc., 1990.
    45. C. Sanchez, and F. Ribot, “Stability enhancement of heavy-metal–macrocycle complexes via pendant amide coordination”, New Journal of Chemistry, 8, 1007-1008, 1994.
    46. C. C. Wang, and J. Y. Ying, “Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals”, Chemistry of Materials, 11, 3113-3120, 1999.
    47. 陳慧英,氧化鋁薄膜之製備及其在氣體分離上之應用,國立成功大學博士論文,1994.
    48. J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, and D. F. Kolesar, “Photoelectrolysis of water in cells with TiO2 anodes”, Materials Research Bulletin, 10, 1023-1030, 1975.
    49. H. Hidaka, Y. Asai, J. Zhao, K. Nohara, E. Pelizzetti, and N. Serpone, “Photoelectrochemical decomposition of surfactants on a TiO2/TCO particulate film”, Journal of Physical Chemistry, 99, 8244-8248, 1995.
    50. J. Nowotny, C. C. Sorrell, T Bak, and L. R. Sheppard, “Solar-hydrogen: Unresolved problems in solid-state science”, Solar Energy, 78, 593-602, 2005.
    51. Yu. V. Pleskov, Solar Energy Conversion. A Photoelectrochemical approach, Springer Berlin, 1990.
    52. K. L. Hardee, and A. J. Bard, “Semiconductor electrodes”, Journal of The Electrochemical Society, 124, 215-224, 1977.
    53. A. J. Nozik, “Photoelectrolysis of water using semiconducting TiO2 crystals” Nature, 257, 383-385, 1975.
    54. 吳炳佑,含TiO2光催化膜之製備與性質,國立中央大學博士論文,1996.
    55. D. H. Bao, H. Q. Yang, and L. Y. Zhang, “Structure and optical properties of SrTiO3 thin films prepared by a sol-gel technique”, Physica status solidi (a): Applications and Materials Science, 169, 227-233, 1998.
    56. J. G. Mavroides, J. A. Kafalas, and D. F. Kolesar, “Photoelectrolysis of water in cells with SrTiO3 anodes”, Applied Physics Letters, 28, 241-243, 1976.
    57. K. H. Yoon, and T. H. Kim, “Photoeffects in undoped and doped SrTiO3 ceramic electrodes”, Journal of Solid State Chemistry, 67, 359-363, 1987.
    58. J. H. Kennedy, and K. W. Frese, “Photo-oxidation of water at Barium Titanate Electrodes”, Journal of the Electrochemical Society, 123, 1683-1686, 1976.
    59. G. Hodes, D. Cahen, and J. Manassen, “Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)”, Nature, 260, 312-313, 1976.
    60. S. Licht, B. Wang., S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Efficient Solar Water splitting, Exemplified by RuO2-Catalyzed AlGaAs/Si Photoelectrolysis”, Journal of Physical Chemistry-B, 104, 8920-8924, 2000.
    61. M. A. Butler, and D. S. Ginley, “Review principles of photoelectrochemical solar energy conversion”, Journal of Materials Science, 15, 1-19, 1980.
    62. A. K. Ghosh, and H. P. Maruska, “Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes”, Journal of the Electrochemical Society, 124, 1516-1521, 1977.
    63. R. B. James, “Photoproduction of hydrogen: A review”, Solar Energy, 57, 37–50, 1996.
    64. R. N. Pandey, K. S. Chandra Babu, and O. N. Srivastave, “High conversion efficiency photoelectrochemical solar cells”, Progerss in Surface Science, 52, 125-192, 1996.
    65. Jiaguo Yu, Jianfeng Xiong, Bei Cheng, and Shengwei Liu, “Fabrication and characterization of Ag-TiO2 multiphase manocomposite thin films with enhanced photocatalytic activity”, Applied Catalysis B: Environmental, 60, 211-221, 2005.
    66. V. M. Aroutioumian, V. M. Arakelyan, and G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting”, Solar Energy, 78, 581-592, 2005.
    67. X. Z. Li, C. He, N. Graham, and Y. Xiong, “Photoelectrocatalytic degradation of bisphenol A in aqueous solution using a Au-TiO2/ITO film”, Journal of Applied Electrochemistry, 35, 741-750, 2005.
    68. S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide”, Catalysis Today, 93-95, 877-884, 2004.
    69. J. J. Zou, C. J. Liu, K. L. Yu, D. G. Cheng, Y. P. Zhang, F. He, H. Y. Du, and L. Cui, “Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method”, Chemical Physics, 400, 520-523, 2004.
    70. N. Serpone, and E. Pelizzetti, Photocatalysis fundamentals and applications, Wiley, 1989.
    71. B. E. Warren, X-ray Diffraction, Wesley, 1969.
    72. Spurr R. A, and Myers H., “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer”, Analytical Chemistry , 29, 760, 1957.
    73. S. Komarneni, R. Roy, E. Breval, “A new method of making titania gels and their microstructure”, Journal of the American Ceramic Society, 68, C41-C42, 1985.
    74. Z. Wang, J. Chen, and X. Hu, “Preparation of nanocrystalline TiO2 powders at near room temperatue from peroxo-polytitanic acid gel”, Materials Letters, 43, 87-90, 2000.
    75. Z. Wang, and X. Hu, “Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid”, Thin Solid Films, 352, 62-65, 1999.
    76. P. D. Fleischauer, and J. K. Allen, “Photochemical hydrogen formation by the use of titanium dioxide thin-film electrodes with visible-light excitation”, Journal of Physical Chemistry, 82, 432-438, 1978.
    77. S. I. Seok, B. Y. Ahn, N. C. Pramanik, H. kim, and S. I. Hong, “Preparation of nanosized rutile TiO2 from an aqueous peroxotitanate solution”, Journal of the American Ceramic Society., 89, 1147-1149, 2006.
    78. H. Ichinose, M. Terasaki and H. Katsuki, “Syntehsis of peroxo-modified anatase sol from peroxo titanic acid solution”, Journal of the Ceramic Society of Japan, 104, 697-700, 1996.
    79. Y. B. Xie, “Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes”, Advanced Functional Materials, 16, 1823-1831, 2006.
    80. A. V. Kokate, M. R. Asabe, P. P. Hankare, and B. K. Chougule, “Effect of annealing on properties of electrochemically deposited CdTe thin film”, Journal of Physics and Chemistry of Solid, 68, 53-58, 2007.
    81. M. Langlet, A. Kim, M. Audier, C. Guillard, and J. M. Herrmann, “transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols”, Thin Solid Films, 429, 13-21, 2003.
    82. W. Que, A. Uddin, and X. Hu, “Thin film TiO2 electrodes derived by sol-gel process for photovoltaic applications”, Journal of Power Sources, 159, 353-356, 2006.
    83. L. Ge, M. Xu, M. Sun, and H. Fang, “Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols”, Journal of Sol-Gel Science and Technology, 38, 47-53, 2006.
    84. H. Kim, S. Lee, and Y. Han, “Preparation of dip-coated TiO2 photocatalyst on ceramic foam pellets”, Journal of Materials Science, 41, 6150-6153, 2006.
    85. J. Yu, X. Zhao, and Q. Zhao, “Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method”, Thin Solid Films, 379, 7-14, 2000.
    86. D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, “Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol-gel dip coating”, Materials Letters, 57, 355-360, 2002.
    87. L. Chen, M. E. Graham, G. Li, and K. A. Gray, “Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition”, Thin Solid Films, 515, 1176-1181, 2006.
    88. Y. Wang, Z. H. Jiang, and F. J. Yang, “Preparation and photocatalytic activity of mesoporous TiO2 derived from hydrolysis condensation with TX-100 as template”, Materials Science and Engineering B, 128, 229-233, 2006.
    89. K. Liu, H. Fu, K. Shi, F. Xiao, L. Jing, and B. Xin, “Preparation of large-pore mesoporous nanocrystalline TiO2 thin films with tailored pore diameters”, The Journal of Physical Chemistry B, 109, 18719-18722, 2005.
    90. S. Yang, and L. Gao, “New method to prepare nitrogen-doped titanium dioxide and its phhotocatalytic activities irradiated by visible light”, Journal of the American Ceramic Society, 87, 1803-1805, 2004.
    91. O. N. Sruvastava, R. K. Karn, and M. Misra, “Semisonductor-septum photoelectrochemical solar cell for hydrogen production”, International Journal of Hydrogen Energy, 25, 495-503, 2000.
    92. P. A. Christensen, T. P. Curtis, T. A. Egerton, S. A. M. Kosa, and J. R. Tinlin, “Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide”, Applied Catalysis B: Environmental, 41371-386, 2003.
    93. Y. Xie, “Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes”, Advanced Functional Materials, 16, 1823-1831, 2006.
    94. R. N. Pandey, K. S. Chandra Babu, and O. N. Srivastava, “High conversion efficiency photoelectrochemical solar cells”, Process in Surface Science, 51, 125-192, 1996.
    95. M. Takahashi, K. Tsukigi, T. Uchino, and T. Yoko, “Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method”, Thin Solid Films, 388, 231-236, 2001.
    96. M. Paulose, G. K. Mor, O. K. Varghese, K. Shankar, and C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays”, Journal of Photochemistry and Photobiology A: Chemistry, 178, 8-15, 2006.
    97. T. Yoko, A. Y.uasa, K.kamiya, and S. sakka, “Sol-gel-derived TiO2 film semiconductor electrode for photocleavage of water”, Journal of the Electrochemical Society, 138, 2279-2285, 1991.
    98. T. Yoko, L. Hu, H. Kozuka, and S. Sakka, “Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method”, Thin Solid Films, 283, 188-195, 1996.
    99. S. Yang, Y. Liu, and C. Sun, “Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution”, Applied Catalysis A: General, 301, 284-291, 2006.
    100. N. Chandrasekharan, and P. V. Kamat, “Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles”, Journal of Physical Chemistry B, 104, 10851-10857, 2000.
    101. A. Hagfeldt, H. Lindstrom, S. Sodergren, and S. E. Lindquist, “Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients”, Journal of Electroanalytical Chemistry, 381, 39-46, 1995.
    102. D. Tafalla, and P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 Electrodes”, Journal of the Electrochemical Society, 137, 1810-1815, 1990.
    103. A. Wahl, M. Ulmann, A. Carroy, and J. Augustynski, “Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes”, Journal of the Chemical Society-Chemical Communications, 19, 2277-2278, 1994.
    104. J. L. Cao, Z. C. Wu, and J. Q. Zhang, “Photostability study of nanoporous TiO2 film electrodes in different pH solutions”, Journal of Electroanalytical Chemistry, 595, 71-77, 2006.
    105. O. Teschke, “Theory and operation of a steady-state pH differential water electrolysis cell”, Journal of Applied Electrochemistry, 12, 219, 223, 1982.
    106. Y. F. Su, T. C. Chou, T. R. Ling, and C. C. Sun, “Photocurrent performance and nanostructure analysis of TiO2/ITO electrodes prepared using reactive sputtering”, Journal of the Electrochemical Society, 151, A1375-A1382, 2004.
    107. A. Yasumori, H. Shinoda, Y. Kameshima, S. Hayashi, and K. Okada, “Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods”, Journal of Materials Chemistry, 11, 1253-1257, 2001.
    108. K. Vinodgopal, S. Hotchandani, and P. V. Kamat, “Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-Chlorophenol”, Journal of Physical Chemistry, 97, 9040-9044, 1993.
    109. N. R. de Tacconi, M. Mrkic, and K. Rajeshwar, “Photoelectrochemical oxidation of aqueous sulfite on Ni-TiO2 composite film electrodes”, Langmuir, 16, 8426-8431, 2000.
    110. A. Fujishima, and Koichi Kohayakawa, “Hydrogen production under sunlight with an electrochemical photocell”, Journal of the Electrochemical Society, 122, 1487-1489, 1975.
    111. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions”, International Journal of Hydrogen Energy, 27, 19-26, 2002.
    112. J. Akikusa, and S. U. M. Khan, “Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell”, International Journal of Hydrogen Energy, 22, 875-882, 1997.
    113. R. R. Bhave, Inorganic membranes synthesis, characteristics and applications, Van Nostrand Reinhold, 1991.

    下載圖示 校內:2008-07-18公開
    校外:2008-07-18公開
    QR CODE