| 研究生: |
王凱立 Wang, Kai-Li |
|---|---|
| 論文名稱: |
應用於軟體無線電射頻前端系統之低雜訊放大器與開關之研製 Design and Implementation of Low-Noise Amplifier and Switches for RF front-end system of Software Defined Radio |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 砷化鎵 、低雜訊放大器 、收發機開關 、單石微波積體電路 |
| 外文關鍵詞: | GaAs, LNA, T/R Switch, MMIC |
| 相關次數: | 點閱:116 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軟體無線電在近年來由於無線通訊的蓬勃發展,能夠以編寫程式碼適應目前通訊協議的快速更迭,而具有相當彈性化的優勢,但其本身的線性度以及抑制雜訊的能力卻相當不足。本論文主要目的為設計一個射頻前端系統以解決軟體無線電本身動態範圍不足的問題,並且使得訊號能夠在天線與接收與發射端之間作路徑切換。
本論文首先使用了穩懋0.15μm pHEMT 製程,實現K 頻帶低雜訊放大器,可以提升SDR 本身的動態範圍以及降低雜訊指數。本電路架構為二級的放大器,利用傳輸線作為阻抗匹配以增加佈局自由度,達到電路微小化的目的,並且在一二級中皆使用了源級退化做為降低雜訊的方式。量測結果本電路在19.2GHz 下有18.9dB 的增益,3dB 頻寬為4.8GHz,雜訊指數在20GHz 下有最佳值2.5dB,輸入1dB 功率壓縮點量測於19GHz,值為-12dBm,輸入三階截斷點量測於19GHz,通道間隔5MHz,值為-9.5dBm,核心晶片面積為1.33*0.667mm2。
本論文第二部分則是利用穩懋0.15μm pHEMT 製程,製作使用於K 頻帶的單刀雙擲開關。本電路利用二極體作為開關元件,可以得到較高的訊號功率耐受度。量測結果本電路在20~25GHz 下其輸入損耗小於3dB。線性度方面,三階截斷點量測於23GHz,通道間隔為5MHz,其值為38dBm。整體晶片的核心面積為0.7*1.5mm2。
第三部分利用穩懋0.15μm pHEMT 製程,設計一個雙頻段電晶體單刀雙擲開關,本開關利用四分之一波長傳輸線作匹配,並使用電晶體作為開關元件,可免除功率消耗。其中所匹配的頻段分別為K 及Ka 頻帶。量測結果得知模擬有誤,雙埠皆匹配在K 頻帶,輸入損耗自15~21.5GHz 皆小於2.5dB,隔離度皆大於23dB。線性度方面,輸入1dB 功率壓縮點量測於20GHz 有7dBm,三階截斷點量測於20GHz,通道間隔為5MHz,值為22dBm。晶片核心面積為0.65*1.7mm2。
本文的最後一個電路為一個新型的雙刀雙擲開關,可使用在切換頻分雙工的SDR之訊號路徑。本電路利用FR4 印刷電路板製作,主頻為2.4GHz,以二級體作為開關元件。本論文中同時製作了四分之一波長雙刀雙擲開關與單刀雙擲開關做為比較使用。
本電路的三級傳輸線架構能夠較二級架構有著更高的隔離度,並且本電路在將其中一端接上50 歐姆的電阻也可作為單刀雙擲開關使用。量測結果中,本架構的隔離度為30dB,大幅優於傳統雙刀雙擲開關的21dB 與單刀雙擲開關的16dB。
The objective of this research is resolving the bad dynamic range and high noise figure of the SDR module. The additional LNA can help to lower the noise figure, while the SPDT and DPDT switch can change the signal route for TDD and FDD use, respectively. First, the K-band GaAs LNA uses source degeneration and resistor to improve overall noise figure and stability, GaAs process also gives high gain. The measured result shows 18.9dB highest gain at 19.2GHz and NF less than 3.1dB over Kband, while the circuit remains stability. Second, the K-band GaAs diode SPDT switch uses diode two control the signal path, by use this, the switch has high power durability.
The measured result shows the insertion loss less than 3dB from 20 to 25GHz, and the highest linearity IIP3 reaches 38dBm. Third, the K-band GaAs Dual-band FET SPDT switch uses quarter-wavelength to matching the impedance, and the circuit consumes no power. The frequency is designed to K and Ka-band, while the measured result shows two ports are mismatched to K-band. The insertion loss less than 2.5dB from 15 to 21.5GHz, IIP3 and P1dB measured at 20GHz is 7 and 22dBm. Final, the MIC DPDT switch is a novel architecture, which has much more better isolation than quarterwavelength DPDT switch. The circuit is fabricated on FR4 board and the measured result show the highest isolation 30dB higher than the 21dB on quarter-wavelength DPDT and 16dB on SPDT switch.
第一章
[1] B. Razavi, “RF IC design challenges,” Design Automation Conference, 1998.
Proceedings, 15-19 June 1998.
[2] Eugene Grayver, “Implementing Software Defined Radio,” Springer-Verlag, New
York, 2013.
[3] R. Vetury, D. Hodge, D. Aichele, J. Shealy ” High Power & Wideband GaN RF
Switch Technology” International Conference on Nitride Semiconductors.
第二章
[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ Prentice Hall, 2011.
[2] T. Melly,A.-S. Porret, C. C.Enz and E. A. Vittoz, “An analysis of flicker noise
rejection in low-power and low-voltage CMOS mixers,” IEEE J. Solid-State Circuits,
vol. 36,pp. 102-109, Jan. 2001.
[3] I.D. Robertson, S. Lucyszyn,”RFIC and MMIC design and technology,” Institution of
Electrical Engineers, 2001.
[4] Reference URL https://www.microwaves101.com/encyclopedias/stability-factor
[5] J. Rollett, ” Stability and Power-Gain Invariants of Linear Twoports, ” IRE
Transactions on Circuit Theory, vol. 9, pp.29-32, Mar. 1962.
[6] Reference URL https://e2e.ti.com/blogs_/b/analogwire/archive/2016/08/30/rfsampling-
linearity-performance-is-not-so-straightforward
第三章
[1] P. Mahmoudidaryan, and A. Medi, “Codesign of Ka-Band Integrated Limiter and Low
Noise Amplifier,” IEEE Transactions on Microwave Theory and Techniques, Vol. 64,
No. 9, September, 2016.
[2] P. K. Singh, S. Basu, K. H. Liao, and Y. H. Wang, ”Highly Integrated Ka-Band Sub-
Harmonic Image-Reject Down-Converter MMIC,” IEEE Microwave and Wireless
Components Letters, Vol. 19, No. 5, May 2009.
[3] G. Nikandish, and A. Medi, ”Transformer-Feedback Interstage Bandwidth
Enhancement for MMIC Multistage Amplifiers,” IEEE Transactions On Microwave
Theory And Techniques, Vol. 63, No. 2, February 2015.
[4] S. Masuda, T. Ohki, and T. Hirose,” Very Compact High-Gain Broadband Low-Noise
Amplifier in InP HEMT Technology” IEEE Transactions On Microwave Theory And
Techniques, Vol. 54, No. 12, December 2006.
[5] G. Nikandish, A. Yousefi, and M. Kalantari,” A Broadband Multistage LNA With
Bandwidth and Linearity Enhancement” IEEE Microwave And Wireless Components
Letters, Vol. 26, No. 10, October 2016.
[6] Y. T. Chou, C. C. Chiong, H. Wang, ”A Q-band LNA with 55.7% Bandwidth for
Radio Astronomy Applications in 0.15-μm GaAs pHEMT Process,” Radio-Frequency
Integration Technology (RFIT), 2016 IEEE International Symposium on.
[7] Hua-Quen Tserng, Larry C. Witkowski, Andrew A. Ketterson, Paul Saunier, Ted
Jones” K/Ka-Band Low-Noise Embedded Transmission Line (ETL) MMIC
Amplifiers” IEEE Trans. Microwave Theory And Techniques, Vol. 46, No. 12,
December ,1998.
[8] Robert Malmqvist, Carl Samuelsson, Andreas Gustafsson, Derek Smith, Tauno Vähä-
Heikkilä and Rens Baggen “Monolithic Integration of Millimeter-Wave RF-MEMS
Switch Circuits and LNAs using a GaAs MMIC Foundry Process Technology”
Microwave Workshop Series on Millimeter Wave Integration Technologies (IMWS),
2011 IEEE MTT-S International.
[9] K.W. Yu, Y. L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-band low-noise
amplifiers using 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett.,
vol. 14, no. 3, pp. 106–108, Mar. 2004.
第四章
[1] K. Lam, H. Ding, X. Liu, B. A. Orner, J. Rascoe, B. Dewitt, E. Mina, and B. Gaucher,
“Wideband Millimeter Wave PIN Diode SPDT Switch using IBM 0.13μm SiGe
Technology” Proceedings of the 2nd European Microwave Integrated Circuits
Conference, Munich Germany, October 2007.
[2] P. Bermkopf, M. Schindler, and A. Bertrand, “A high power K / Ka-band monolithic
T/R switch,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp.
Dig., June 1991, pp. 15–18.
[3] M. J. Schindler and A. Morris, “DC–40 GHz and 20–40 GHz MMIC SPDT switches,”
IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 1486–1493, Dec. 1987.
[4] T. Buber; F. Kolak ; N. Kinayman; J. Bennett, “A low-loss high-isolation absorptive
GaAs SPDT PIN switch for 24 GHz automotive applications,” Radio and Wireless
Conference, 2003. RAWCON '03. Proceedings, 2003, pp. 349–352.
[5] R. Sanusi, M.A. Ismail, K. Norhapizin, A. Rahim, A. Marzuki, M.R. Yahya, “15 GHz
SPDT switch design using 0.15 μm GaAs technology for microwave applications,”
International Conference on Electronic Design, 2008, pp. 1-4.
[6] O. Levy, A. Madjar, D. Kryger, S. Matarasso, “Fully Terminated Ka Band High
Isolation, High Power MMIC SPDT Switch in GaAs PIN Technology,” Microwave
Symposium Digest, IEEE MTT-S International, 2003, pp. 2019-2022.
第五章
[1] A. Biondi, S. D'Angelo, F. Scappaviva, D. Resca, V. A. Monaco,” Compact GaN
MMIC T/R module Front-End for X-band pulsed radar”, Proceedings of the 11th
European Microwave Integrated Circuits Conference.
[2] S. D'Angelo, A. Biondi, F. Scappaviva, D. Resca, V. A. Monaco, ”A GaN MMIC
chipset suitable for integration in future X-band spaceborne radar T/R module
Frontends” Microwave, Radar and Wireless Communications (MIKON), 2016 21st
International Conference on.
[3] M. Hieda, K. Nakahara, K. Miyaguchi, H. Kurusu, Y. Iyama, T. Takagi, and S.
Urasaki,” High-Isolation Series-Shunt FET SPDT Switch Witha Capacitor Canceling
FET Parasitic Inductance” IEEE Transactions on Microwave Theory and Techniques,
Vol. 49, No. 12, December 2001.
[4] R. L. Schmid, A. Ç. Ulusoy, P. Song, and J. D. Cressler,” A 94 GHz, 1.4 dB Insertion
Loss Single-Pole Double-Throw Switch Using Reverse-Saturated SiGe HBTs” IEEE
Microwave and Wireless Components Letters, Vol. 24, No. 1, January 2014.
[5] Q. Li , W. Che , H. Chen , L. Gu , and W. Feng,” Dual-gate GaN-HEMT SPDT
Switch with High Isolation” ,Communication Problem-Solving (ICCP), IEEE
International Conference on, 2014.
[6] K.H. Lee, Z. Jin, K. H. Koo., “High linearity SPDT switch for dual band wireless
LAN applications,” Microwave Conference Proceedings, Asia-Pacific Conference
Proceedings, 2005.
[7] F.R. Connor, “Wave Transmission,” Edward Arnold Ltd., 1972, pp.13-16.
[8] P. Bermkopf, M. Schindler, and A. Bertrand, “A high power K / Ka-band monolithic
T/R switch,” in IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp.
Dig., June 1991, pp. 15–18.
[9] M. J. Schindler and A. Morris, “DC–40 GHz and 20–40 GHz MMIC SPDT switches,”
IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 1486–1493, Dec. 1987.
[10] H. Mizutani, M. Funabashi, M. Kuzuhara, and Y. Takayama, “Compact DC-60-GHz
HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans.
Microw. Theory Tech., vol. 46, no. 11, pp. 1597–1603, Nov. 1998.
[11] S. Kaleem, J. Kühn, R. Quay, and M. Hein, “A high-power Ka-band single-pole
single-throw switch MMIC using 0.25 μm GaN on SiC,” in Proc. IEEE RWS, 2015,
pp. 132–134.
[12] D. P. Nguyen, A.V. Pham; F. Aryanfar, ”A K-Band High Power and High Isolation
Stacked-FET Single Pole Double Throw MMIC Switch Using Resonating Capacitor”
IEEE Microwave and Wireless Components Letters, vol.26, no. 9,2016.
第六章
[1] K. Kohama, T. Ohgihara, and Y. Murakami, “High Power DPDT Antenna Switch
MMIC for Digital Cellular Systems,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 10, pp. 1406–1411, 1996.