| 研究生: |
吳佳鴻 Wu, Chia-Hung |
|---|---|
| 論文名稱: |
利用模糊目標規劃與兩階段品質機能展開求解訂單分配問題 Applying Fuzzy Goal Programming and Fuzzy Quality Function Deployment to Determine Order Allocation |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 品質機能展開(QFD) 、訂單問題 、模糊目標規劃(FGP) |
| 外文關鍵詞: | Quality function deployment (QFD), Order Allocation, Fuzzy goal programming (FGP) |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
供應商選擇一直是所有產業所關心的議題,零售商對供應商的要求眾多,從價格、穩定性、交期等,如何有效找出能滿足零售商的供應商評選指標,並根據該指標進行供應商之訂單分配為一個重要的課題。目前零售商大多都只與單一供應商進行交易,並衍生如壟斷市場或在嚴重天災下產業供應鏈斷裂之情況。面對眾多供應商時,卻又會產生訂單分配問題,零售商如何在供應商最大產能、最低訂購量等限制下,有系統地進行訂單分配,並同時最大化滿足零售商之需求、最小化成本與等待時間為一大難題。
品質機能展開是企業有效掌握最終消費者需求並將該需求轉換成具體設計規格的方法,而品質屋是品質機能展開中最重要的工具。而在過去文獻資料中,更有許多學者以供應商之角度,將品質機能展開之做法與概念應用在供應商評估中,將零售商需求連結至供應商之評選指標,並根據此評選指標選出最適合之供應商,鮮少有延伸至供應商之訂單分配問題。此外,由於市場變化迅速,下游些微變動在長鞭效應下,也會使得上游難以預測與規劃,因此零售商無法精確設定各目標式之理想值,故將模糊目標規劃引入,透過理想值與容忍值的設定,以貼近現實模糊不清之實際狀況。
本研究將模型分成三個階段。第一階段將零售商需求與供應商評選指標建立有效的連結;第二階段依產品種類個別建立品質屋,並將評選指標連結各供應商;第三階段利用模糊目標規劃方法,根據不同現實狀況套用不同模型,有效解決因眾多供應商所產生的訂單分配問題,同時以最大化零售商產品需求滿意度、最小化成本與等待時間為目標。
透過範例演練,發現本研究所提出之模型不僅優於傳統實數方法求解,且能在最低購買量限制下,根據不同情況套用至不同模型,找出最佳訂購數量。
Order allocation has become a topic of concern in all industries. Most retailers only trade with one supplier, resulting in situations such as monopolistic markets or supply chain disruptions. However, if they trade with many suppliers, retailers find it difficult to systematically allocate orders under constraints such as supplier capacity, the satisfaction of the retailer, etc. Quality function deployment (QFD) is a method by which companies can capture retailer demands that are difficult to measure due to interaction effects and can convert these demands into specific design specifications using a key tool, the House of Quality (HOQ). Scholars rarely discuss multi-product order allocation from the retailers’ perspective. In addition, retailers cannot clearly define the actual value of each target under the bullwhip effect in a rapidly changing world, which can be determined with the help of fuzzy goal programming (FGP).
In this study, we divide the model into three stages. QFD is used in both the first and second stages. The first stage establishes a link between retailer demands and the supplier selection indicators. The second stage establishes individual HOQ matrices to link selection indicators with each supplier based on product type. The results for the importance are regarded as retailer satisfaction. The third stage integrates these importance values into four different FGP models to solve order allocation problems.
With the help of practical exercises, we find the model proposed in this study not only makes it possible to obtain more accurate order quantities than would be the case otherwise, but also can be applied to different FGP models according to four situations.
Alegoz, M., & Yapicioglu, H. (2019). Supplier selection and order allocation decisions under quantity discount and fast service options. Sustainable Production and Consumption, 18, 179-189.
Alinezad, A., Seif, A., & Esfandiari, N. (2013). Supplier evaluation and selection with QFD and FAHP in a pharmaceutical company. The International Journal of Advanced Manufacturing Technology, 68(1-4), 355-364.
Armacost, R. L., Componation, P. J., Mullens, M. A., & Swart, W. W. (1994). An AHP framework for prioritizing customer requirements in QFD: an industrialized housing application. IIE Transactions, 26(4), 72-79.
Askin, R. G., & Dawson, D. W. (2000). Maximizing customer satisfaction by optimal specification of engineering characteristics. IIE Transactions, 32(1), 9-20.
Babbar, C., & Amin, S. H. (2018). A multi-objective mathematical model integrating environmental concerns for supplier selection and order allocation based on fuzzy QFD in beverages industry. Expert Systems with Applications, 92, 27-38.
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.
Bera, A. K., Jana, D. K., Banerjee, D., & Nandy, T. (2019). Multiple-criteria fuzzy group decision-making with multi-choice goal programming for supplier selection: A case study. Discrete Mathematics, Algorithms and Applications, 11(03), 1950029.
Buckley, J. J. (1988). Possibility and necessity in optimization. Fuzzy Sets and Systems, 25(1), 1-13.
Burton, T. T. (1988). JIT/Repetitive Sourcing Strategies:'Tying The Knot'With Y. Production and Inventory Management Journal, 29(4), 38.
Büyüközkan, G., & Berkol, Ç. (2011). Designing a sustainable supply chain using an integrated analytic network process and goal programming approach in quality function deployment. Expert Systems with Applications, 38(11), 13731-13748.
Büyüközkan, G., & Feyzioğlu, O. (2005). Group decision making to better respond customer needs in software development. Computers & Industrial Engineering, 48(2), 427-441.
Cadenas, J. M., & Verdegay, J. L. (2000). Using ranking functions in multiobjective fuzzy linear programming. Fuzzy Sets and Systems, 111(1), 47-53.
Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management Science, 4(1), 38-91.
Carnevalli, J. A., & Miguel, P. C. (2008). Review, analysis and classification of the literature on QFD—Types of research, difficulties and benefits. International Journal of Production Economics, 114(2), 737-754.
Chan, L. K., & Wu, M. L. (2005). A systematic approach to quality function deployment with a full illustrative example. Omega, 33(2), 119-139.
Chan, L. K., Kao, H. P., & Wu, M. L. (1999). Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods International Journal of Production Research, 37(11), 2499-2518.
Chen, L. H., & Tsai, F. C. (2001). Fuzzy goal programming with different importance and priorities. European Journal of Operational Research, 133(3), 548-556.
Chen, L. H., & Weng, M. C. (2003). A fuzzy model for exploiting quality function deployment. Mathematical and Computer Modelling, 38(5-6), 559-570.
Chen, L. H., & Weng, M. C. (2006). An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. European Journal of Operational Research, 172(1), 230-248.
Chen, L. H., & Chen, C. N. (2014). Normalisation models for prioritising design requirements for quality function deployment processes. International Journal of Production Research, 52(2), 299-313.
Chen, L. H., & Ko, W. C. (2009). Fuzzy approaches to quality function deployment for new product design. Fuzzy Sets and Systems, 160(18), 2620-2639.
Chen, L. H., & Ko, W. C. (2010). Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept. European Journal of Operational Research, 201(2), 619-632.
Dahel, N. E. (2003). Vendor selection and order quantity allocation in volume discount environments. Supply Chain Management: An International Journal, 8(3-4), 335-342.
De Boer, L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7(2), 75-89.
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.
Dursun, M., & Karsak, E. E. (2013). A QFD-based fuzzy MCDM approach for supplier selection. Applied Mathematical Modelling, 37(8), 5864-5875.
Faez, F., Ghodsypour, S. H., & O’Brien, C. (2009). Vendor selection and order allocation using an integrated fuzzy case-based reasoning and mathematical programming model. International Journal of Production Economics, 121(2), 395-408.
Farina, M., & Amato, P. (2004). A fuzzy definition of" optimality" for many-criteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(3), 315-326.
Fung, R. Y. K., Tang, J., Tu, Y., & Wang, D. (2002). Product design resources optimization using a non-linear fuzzy quality function deployment model. International Journal of Production Research, 40(3), 585-599.
Han, C. H., Kim, J. K., & Choi, S. H. (2004). Prioritizing engineering characteristics in quality function deployment with incomplete information: a linear partial ordering approach. International Journal of Production Economics, 91(3), 235-249.
Han, S. B., Chen, S. K., Ebrahimpour, M., & Sodhi, M. S. (2001). A conceptual QFD planning model. International Journal of Quality & Reliability Management.
Hannan, E. L. (1981). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235-248.
Hauser, J. R., & Clausing, D. (1988). The house of quality. Harvard Business Review, 66(3), 63-73.
Heinritz, S. F. (1991). Purchasing: Principles and Applications. Prentice Hall.
Ho, E. S. S. A., Lai, Y. J., & Chang, S. I. (1999). An integrated group decision-making approach to quality function deployment. IIE Transactions, 31(6), 553-567.
Inuiguchi, M., & Sakawa, M. (1996). Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets and Systems, 78(2), 231-241.
Jayaraman, V., Srivastava, R., & Benton, W. C. (1999). Supplier selection and order quantity allocation: a comprehensive model. Journal of Supply Chain Management, 35(1), 50-58.
Jiménez, M., Arenas, M., Bilbao, A., & Rodrı, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609.
Junior, F. R. L., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21, 194-209.
Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., & Diabat, A. (2013). Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. Journal of Cleaner Production, 47, 355-367.
Karsak, E. E. (2004). Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment. Computers & Industrial Engineering, 47(2-3), 149-163.
Karsak, E. E., & Dursun, M. (2015). An integrated fuzzy MCDM approach for supplier evaluation and selection. Computers & Industrial Engineering, 82, 82-93.
Karsak, E. E., Sozer, S., & Alptekin, S. E. (2003). Product planning in quality function deployment using a combined analytic network process and goal programming approach. Computers & Industrial Engineering, 44(1), 171-190.
Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Economic Research-Ekonomska istraživanja, 30(1), 1073-1118.
Keskin, B. B., Melouk, S. H., & Meyer, I. L. (2010). A simulation-optimization approach for integrated sourcing and inventory decisions. Computers & Operations Research, 37(9), 1648-1661.
Kim, K. J., Moskowitz, H., Dhingra, A., & Evans, G. (2000). Fuzzy multicriteria models for quality function deployment. European Journal of Operational Research, 121(3), 504-518.
Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice hall.
Kumar, M., Vrat, P., & Shankar, R. (2004). A fuzzy goal programming approach for vendor selection problem in a supply chain. Computers & Industrial Engineering, 46(1), 69-85.
Kwong, C. K., & Bai, H. (2002). A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of Intelligent Manufacturing, 13(5), 367-377.
Lai, Y. J., Ho, E. S. S. A., & Chang, S. I. (1998). Identifying customer preferences in quality function deployment using group decision-making techniques. Integrated Product and Process Development–Methods, Tools, and Technologies, Wiley, New York, NY, 1-28.
Liu, A., Xiao, Y., Lu, H., Tsai, S. B., & Song, W. (2019). A fuzzy three-stage multi-attribute decision-making approach based on customer needs for sustainable supplier selection. Journal of Cleaner Production, 239, DOI: 10.1016/j.jclepro.2019.118043
Lo, H. W., Liou, J. J., Wang, H. S., & Tsai, Y. S. (2018). An integrated model for solving problems in green supplier selection and order allocation. Journal of Cleaner Production, 190, 339-352.
Luhandjula, M. K. (1987). Multiple objective programming problems with possibilistic coefficients. Fuzzy Sets And Systems, 21(2), 135-145.
Luhandjula, M. K., & Rangoaga, M. J. (2014). An approach for solving a fuzzy multiobjective programming problem. European Journal of Operational Research, 232(2), 249-255.
Lyman, D. (1990, June). Deployment normalization. In Transactions from the Second Symposium on Quality Function Deployment (pp. 307-315).
Mafakheri, F., Breton, M., & Ghoniem, A. (2011). Supplier selection-order allocation: A two-stage multiple criteria dynamic programming approach. International Journal of Production Economics, 132(1), 52-57.
Memari, A., Dargi, A., Jokar, M. R. A., Ahmad, R., & Rahim, A. R. A. (2019). Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. Journal of Manufacturing Systems, 50, 9-24.
Mirzaee, H., Naderi, B., & Pasandideh, S. H. R. (2018). A preemptive fuzzy goal programming model for generalized supplier selection and order allocation with incremental discount. Computers & Industrial Engineering, 122, 292-302.
Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15-16), 6237-6254.
Moran, J., ReVelle, J., & Cox, C. (1998). QFD Handbook. New York: John Wiley and Sons
Onar, S. Ç., Büyüközkan, G., Öztayşi, B., & Kahraman, C. (2016). A new hesitant fuzzy QFD approach: an application to computer workstation selection. Applied Soft Computing, 46, 1-16.
Pan, A. C. (1989). Allocation of order quantity among suppliers. Journal of Purchasing and Materials Management, 25(3), 36-39.
Pandey, P., Shah, B. J., & Gajjar, H. (2017). A fuzzy goal programming approach for selecting sustainable suppliers. Benchmarking: An International Journal, 24(5), 1138-1165.
Park, T., & Kim, K. J. (1998). Determination of an optimal set of design requirements using house of quality. Journal of Operations Management, 16(5), 569-581.
Rommelfanger, H. J. (2007). Optimization of fuzzy objective functions in fuzzy (multicriteria) linear programs-a critical survey. In Theoretical Advances and Applications of Fuzzy Logic and Soft Computing (pp. 324-333). Springer, Berlin, Heidelberg.
Sakawa, M., & Yano, H. (1988). An interactive fuzzy satisficing method for multiobjective linear fractional programming problems. Fuzzy Sets and Systems, 28(2), 129-144.
Sauer, J., Suelmann, G., & Appelrath, H. J. (1998). Multi-site scheduling with fuzzy concepts. International Journal of Approximate Reasoning, 19(1-2), 145-160.
Şenyiğit, E. (2013). Supplier selection and purchase problem for multi-echelon defective supply chain system with stochastic demand. Neural Computing and Applications, 22(2), 403-415.
Slowinski., R., & Teghem, J. (1990). Stochastic vs. Fuzzy Approaches to Multiobjective Mathematical Programming Under Uncertainty. USA: Kluwer Academic Publishers.
Sohn, S. Y., & Choi, I. S. (2001). Fuzzy QFD for supply chain management with reliability consideration. Reliability Engineering & System Safety, 72(3), 327-334.
Sullivan, L. P. (1986). Quality function deployment. Quality Progress (ASQC), 39-50.
Timpe, C. H., & Kallrath, J. (2000). Optimal planning in large multi-site production networks. European Journal of Operational Research, 126(2), 422-435.
Tiwari, R. N., Dharmar, S., & Rao, J. R. (1986). Priority structure in fuzzy goal programming. Fuzzy Sets and Systems, 19(3), 251-259.
Tiwari, R. N., Dharmar, S., & Rao, J. (1987). Fuzzy goal programming—an additive model. Fuzzy Sets and Systems, 24(1), 27-34.
Wasserman, G. S. (1993). On how to prioritize design requirements during the QFD planning process. IIE Transactions, 25(3), 59-65.
Watson, K., & Polito, T. (2003). Comparison of DRP and TOC financial performance within a multi-product, multi-echelon physical distribution environment. International Journal of Production Research, 41(4), 741-765.
Wu, J. Z., & Chien, C. F. (2008). Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings. OR Spectrum, 30(3), 401-430.
Yadav, V., & Sharma, M. K. (2015). Multi-criteria decision making for supplier selection using fuzzy AHP approach. Benchmarking: An International Journal.
Yoji Akao. (2004). Quality Function Deployment: Integrating Customer Requirements into product design. New York: Cambridge, MA: Productivity Press.
Yoon, K., & Hwang, C. L. (1985). Manufacturing plant location analysis by multiple attribute decision making: Part I—single-plant strategy. International Journal of Production Research, 23(2), 345-359.
Yu, C., Shao, Y., Wang, K., & Zhang, L. (2019). A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Systems with Applications, 121, 1-17.
Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh (pp. 19-34).
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249.
Zarandi, M. F., & Saghiri, S. (2003, May). A comprehensive fuzzy multi-objective model for supplier selection process. In The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ'03. (Vol. 1, pp. 368-373). IEEE.
Zhou, M. (1998). Fuzzy logic and optimization models for implementing QFD. Computers & Industrial Engineering, 35(1-2), 237-240.
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.
吳佳樺. (2014). 考慮成本效益之品質機能展開多目標決策模型. 國立成功大學工業與資訊管理所.
羅婉毓. (2009). 結合模糊多目標規劃及模糊品質機能展開之綠色產品設計模型. 國立成功大學工業與資訊管理所.