簡易檢索 / 詳目顯示

研究生: 陳怡蓁
Chen, I-Chen
論文名稱: 孔洞氧化矽材料對向列型液晶性質之效應
Effects of the Porous Silicas on the Behavior of the Nematic Liquid Crystals
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 生物成礦中孔洞氧化矽智慧玻璃
外文關鍵詞: Biomineralization, Mesoporous silica, Smart window
相關次數: 點閱:116下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界有許多複雜的生物結構是高度結合的有機物與無機物,如生物體中的骨頭、牙齒以及海洋中的海藻、貝類等,有機—無機複合材料,是經由分子自組裝過程形成各種階層式結構,本研究模擬自然界生物成礦行為以合成有機—無機複合材料,探討有機界面活性劑分子與無機物分子的自組裝行為,並製備具有螺旋型態的孔洞氧化矽材料。利用材料具有孔洞且構型為螺旋狀的特點,和液晶分子混合,做成簡易液晶顯示器,材料上的孔洞使液晶分子可以和材料之間產生錨定力,加上其構型為長條螺旋狀,可以將向列型液晶相切割成更多的散射區塊,達到降低光穿透度的效果,提升顯示器的對比度。
    研究中成功地利用陽離子界面活性劑(C16TMAB或C18TMACl) 和助界面活性劑(水楊酸或SDS)在特定比例下,和TEOS經過簡單的混合攪拌,即可合成出螺旋狀的孔洞氧化矽材料。以水楊酸當助界面活性劑的螺旋氧化矽長度約數微米至數十微米,管徑約100 nm,表面積約460 m2/g,孔徑約2.5 nm,;以SDS當助界面活性劑的螺旋氧化矽長度約數十微米至數百微米,管徑約400 nm,表面積高達930 m2/g,孔徑2.7 nm。將螺旋狀氧化矽和5CB液晶分子混合,製成簡易的顯示器,施加電壓便可操控顯示器的穿透度,中孔洞螺旋狀氧化矽產物施加電壓後穿透度高達85%,關電壓後回復百分比37%,而微孔洞螺旋狀氧化矽產物施加電壓後,穿透度約78%,關電壓後回復百分比93%。
    本論文另一部分是探討添加的孔洞氧化矽材料構型、孔徑、顆粒大小均對液晶顯示器的光學性質的影響,這些變因彼此交互影響。為了瞭解孔徑對顯示器的影響,用粒徑均一且孔洞可控制的氧化矽空心球當作添加材。以500 nm壓克力模板球為硬模板,合成出氧化矽空心球,藉由使用不同的表面活性劑改變空心球的孔徑,製成簡易液晶顯示器,發現孔徑大小相同的空心球,液晶行為也相似,顯示器施加電壓前、後會有相同的穿透度。微孔的樣品施加電壓後,也無法有高的穿透度、且回復力不好(穿透度最高58%,回復百分比2.5%);孔徑2.0 nm以上的樣品穿透度都超過90%,回復百分比70%。

    Molecular self-assembly behavior generally existing in the living systems is the basis of complex biological structure. In this thesis, we mimic the biomineralization to fabricate porous silica materials in helical morphology and mesostructure. Mixing the porous silica materials with nematic liquid crystal to produce smart window, whose light transmission properties are altered when voltage is applied. Transmittance of display’s transparent is 85 % and recovery percentage is 37 % in mesoporous helical material. In microporous material, the transmittance of display’s transparent is 78 % and recovery percentage is 93 %. We also used tunable pore size hollow silica sphere to mix with nematic liquid crystal. When particle size and morphology are fixed, materials with same pore size have same transmittance change. Display with microporous hollow silica sphere have low transparent and low recovery percentage (58 % and 2.5 %). Display with pore size larger than 2 nm have 90 % transmittance in transparent state and 70 % recovery percentage.

    第一章 緒論1 1.1 中孔洞材料1 1.2 界面活性劑4 1.3 矽酸鹽的基本概念8 1.4 空心狀材料13 1.5 液晶介紹14 第二章 實驗部分19 2.1 化學藥品19 2.2 實驗流程20 2.2.1 以 CTAB和 SDS之混合界面活性劑製備螺旋狀中孔洞氧化矽 20 2.2.2 以 CTAB和 salicylic acid製備螺旋狀中孔洞氧化矽 21 2.2.3 以壓克力球為模板製作空心球二氧化矽材料 21 2.2.4 修飾材料並封入ITO玻璃23 2.3 儀器鑑定分析24 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM)24 2.3.2 氮氣等溫吸附/脫附測量(N2 Adsorption/Desorption Isotherm)25 2.3.3 全反射紅外光譜法(Attenuated Total Reflectance;ATR) 30 2.3.4 熱重分析儀(Thermogravimetry Analysis;TGA)31 2.3.5 掃描式電子顯微鏡31 第三章 合成螺旋狀氧化矽並應用於液晶33 3.1 研究動機與實驗設計33 3.2 以水楊酸當助界面活性劑合成螺旋狀氧化矽35 3.2.1 合成手法與鑑定35 3.2.2 界面活性劑莫爾比對螺旋型態的影響38 3.2.3 pH值對螺旋型態的影響 39 3.2.4 TEOS添加量對型態的影響41 3.2.5 溫度對螺旋型態的影響 42 3.2.6 使用不同碳鏈(C16TMAB)的界面活性劑與水楊酸合成螺旋狀氧化矽43 3.3 以SDS當助界面活性劑合成螺旋狀氧化矽45 3.3.1 原本合成手法45 3.3.2 改善合成手法與鑑定46 3.3.3 使用不同碳鏈(C18TMACl)的界面活性劑與SDS合成螺旋狀氧化矽 48 3.4 螺旋狀產物應用在液晶顯示器50 3.4.1 親疏水性樣品對液晶的影響50 3.4.2 螺旋狀氧化矽對液晶顯示器的影響52 第四章 合成中孔洞氧化矽空心球並應用於液晶顯示器54 4.1研究動機與實驗設計54 4.2以PEG為界面活性劑合成空心球56 4.3以gelatin當表面活化劑合成中孔洞空心球58 4.3.1以矽酸鈉為氧化矽源58 4.3.2以TEOS為氧化矽源59 4.4以CTAB當表面活化劑合成中孔洞空心球61 4.5以其他不同表面活化劑合成之中孔洞空心球64 4.6不同孔徑氧化矽空心球對液晶顯示器的影響65 第五章 結論69 參考文獻70

    1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    2.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834-10843.
    3.J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
    4.A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    5.H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    6.V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    7.H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
    8.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
    9.J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
    10.Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-+.
    11. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
    12.Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
    13.P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    14.C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
    15.Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-&.
    16.Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
    17.C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
    18.S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392
    19.N. Kroger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
    20.E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
    21.T. F. Todros, Surfactants, Academic Press : London, 1984.
    22.Esumi, Kunio, and Minoru Ueno. Structure-performance Relationships in Surfactants. 2nd ed. Vol. 122. New York: Marcel Dekker, 2003.
    23.N. lsraelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
    24.D. J. Mithchell, B. W. Ninham, J. Chem. Soc, Faraday, Trans. II, 1981, 77, 1264.
    25.http://pubs.rsc.org/en/content/articlehtml/2014/md/c4md00085d.
    26.E. W. Kaler, A. K. Murthy, B. E. Rodriguez, J. A. N. Zasadzinski, Science, 1989, 245, 1371.

    27.L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmuir, 1995, 11, 4267.
    28.M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J.A. Zasadzinski, J. Phys. Chem. 1996, 100, 5874.
    29.K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20, 2117.
    30.C. Letizia, P. Andreozzi, A. Scipioni, C La Mesa, A. Bonincontro, and E. Spigone, J. Phys. Chem. B, 2007, 111, 898.
    31.R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705-5712.
    32.廖文家,中原大學化學所,2005.
    33.鄭舜宇,中山大學材料科學研究所,2001.
    34.陳俊光,中原大學化學所,2003.
    35.Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chemelka, F. Schuth, G. D. Stucky, Chem. Mater.1994, 6, 1176.
    36.D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273, 548.
    37.H. P. Lin and C. Y. Mou Acc. Chem. Rev, 2002, 35, 927.
    38.V. Alfredsson and M. W. Anderson, Chem. Mat., 1996, 8, 1141-1146.
    39.H. Chun Zeng, Current Nanoscience, 3, 177-181.
    40.J. Jang, Springer Berlin / Heidelberg, 2006, pp. 189-260.
    41.Y. R. Ma and L. M. Qi, J. Colloid Interface Sci., 2009, 335, 1-10.
    42.W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62-&.
    43.B. Liu, D. Jia, J. Rao, Q. Meng and Y. Shao, Bulletin of Materials Science, 2008, 31, 771-774.
    44.F.Reinitzer, Monatshefte fur Chemie 9,421(1888);Ann Physic 27,213(1908).
    45.O.1EHMANN,Z.physic.Chem.,4,462(1889) ;Ann Physic.25,852(1908).
    46.http://highscope.ch.ntu.edu.tw/wordpress/?p=1613.
    47.http://highscope.ch.ntu.edu.tw/wordpress/?p=1577
    48. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee and J. E. Jung, Opt. Lett., 2011, 36, 754-756.
    49.http://slideplayer.com/slide/7278894/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE