簡易檢索 / 詳目顯示

研究生: 謝坤安
Hsieh, Kuen-An
論文名稱: 彈性支撐之旋轉樑受移動負荷下之動態分析
Dynamic Analysis of an Elastically Supported, Spinning Beam Subjected to a Moving Load
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 52
中文關鍵詞: 有限元素法移動負荷旋轉樑動態分析
外文關鍵詞: Finite Element Method, Moving Load, Spinning Beam, Dynamic Analysis
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究一彈性支撐之旋轉樑受移動負荷之動態響應。假設旋轉樑為Timoshenko樑,且受一移動力沿軸向作用。本研究利用有限元素法建立模型,利用拉格朗至法(Lagrangian approach)以求得運動方程式,利用朗吉–庫塔法(Runge-Kutta method)求解旋轉樑系統動態響應,並探討支承勁度係數、移動負荷速度與轉軸轉速對系統動態響應的影響。由數值結果得知系統振動與移動負荷速度有很大的關聯,當移動負荷的移動速度越慢則振動也越小。

    In this thesis studies the dynamic response of an Elastically Supported Spinning Beam Subjected to a Moving Load. Firstly, this study simulates the Timoshenko beam, subject is under a moving force along the axial, this study uses the finite element method to construct the model, then uses the Lagrangian approach to derive the equations of motion, using the Runge-Kutta method to solve the dynamic response of the spinning system, and then we discuss stiffness coefficient, the speed of moving load, shaft whirl speed that may affect the system dynamic response. According to the numerical results system vibration and the moving load speed have great relevance, when the speed of the moving load is reduced, the smaller the vibration is.

    摘 要 II Abstract III 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1研究動機與目的 1 1-2文獻回顧 2 1-3本文研究 4 第二章 旋轉軸系統運動方程式 6 2-1分析模型與基本假設 6 2-2 有限元素法 6 2-2-1 轉軸 6 2-2-2 軸承 10 2-2-3 外力 11 2-2-4 系統運動方程式 12 第三章 數值討論與驗證 13 3-1準確性分析 13 3-2集中負荷於彈性支撐之旋轉樑系統 14 3-2-1固定負荷於非旋轉樑中央 14 3-2-2固定負荷於旋轉樑中央 15 3-2-3移動負荷於非旋轉樑 15 3-2-4移動負荷於旋轉樑 16 3-3靜態縮減法應用於變質量旋轉樑系統 18 3-4模擬車床加工 20 參考文獻 23 附錄 26

    [1] Lee, H. P., “Dynamic Response of a Timoshenko Beam on a Winkler Foundation Subjected to a Moving Mass,” Applied Acoustics, Vol. 55, No. 3, 1998, pp. 203–215.

    [2] Yau, J. D., Wu, Y. S., and Yang, Y. B., “Impact Response of Bridges with Elastic Bearings to Moving Loads,” Journal of Sound and Vibration, Vol. 248, No. 1, 2001, pp. 9–30.

    [3] Hino, J., Yoshimura, T., and Ananthanarayana, N., “A Finite Element Method Prediction of the Vibration of a Bridge Subjected to a Moving Vehicle Load,” Journal of Sound and Vibration, Vol. 96, No. 1, 1984, pp. 45–53.

    [4] Olsson, M., “Finite Element, Modal Co-ordinate Analysis of Structures Subjected to Moving Loads,” Journal of Sound and Vibration, Vol. 99, No.1, 1985, pp. 1–12.

    [5] Lin, Y. H., and Trethewey, M. W., “Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads,” Journal of Sound and Vibration, Vol. 132, No. 2, 1990, pp. 323–342.

    [6] Chang, T. P., and Liu, Y. N., “Dynamic Finite Element Analysis of a Nonlinear Beam Subjected to a Moving Load,” International Journal of Solids Structure, Vol. 33. No. 12, 1996, pp. 1673–1688.

    [7] Ruhl, R.L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor Systems,” ASME Journal of Engineering for Industry, Vol. 94, 1972, pp. 126–132.

    [8] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Element,” ASME Journal of Engineering for Industry, Vol. 93, 1976, pp. 593–600.

    [9] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory, ”ASME Journal of Mechanical Design, Vol. 102, 1980, pp. 793–803.

    [10] Zu, J. W. Z., and Han, R. P. S., “Natural Frequencies and Normal Modes of a Spinning Timoshenko Beam with General Boundary Condition,” Journal of Applied Mechanics, Vol. 59, 1992, pp.197–204.

    [11] Katz, R., Lee, C. W., Ulsoy, A. G., and Scott, R. A., “Dynamic Response of a Rotating Shaft Subject to a Moving Load,” Journal of Sound and Vibration, Vol. 122, 1988, pp. 131–148.

    [12] Zu, J. W. Z., and Han, R. P. S., “Analytical Dynamics of a Spinning Timoshenko Beam Subjected to a Moving Load, ” Journal of the Franklin Institute, Vol. 330, No. 1., 1993, pp. 113–129.

    [13] Gu, U. C., and Cheng, C. C., “Vibration Analysis of a High-speed Spindle under the Action of a Moving Mass,” Journal of Sound and Vibration, Vol. 278, 2004, pp. 1131–1146.

    [14] Ouyang, H., and Wang, M., “A Dynamic Model for a Rotating Beam Subjected to Axially Moving Forces,” Journal of Sound and Vibration, Vol. 308, 2007, pp. 674–682.

    [15] Phan, A. V., Cloutier, G. and Mayer, J. R. R., “A Finite-Element Model with Closed-form Solutions to Workpiece Deflections in Turning,” International Journal of Production Research, Vol. 37, No. 17, 1999, pp. 4039–4051.

    [16] Guyan, R. J., “Reduction of Stiffness and Mass Matrices,” AIAA Journal, Vol. 3, 1965. p. 380.

    [17] Vejchodský, T. and Šolín, P., “Static Condensation, Partial Orthogonalization of Basis Functions, and ILU Preconditioning in the hp-FEM,” Journal of Computational and Applied Mathematics, Vol. 218, 2008, pp. 192–200.

    [18] 陳其湟,高速車床工做法,全華圖書,民國73年.

    [19] 趙芝眉、湯銘泉、蔡在壇,金屬切削原理,科技圖書,民國78年.

    下載圖示 校內:2014-09-05公開
    校外:2014-09-05公開
    QR CODE