| 研究生: |
吳遵承 Wu, Tsun-cheng |
|---|---|
| 論文名稱: |
鈀催化三芳香基磷與炔類化合物反應:
合成萘、雙環[5.3.0]癸烷和環戊二烯衍生物 Palladium - Catalyzed Reactions of Triarylphosphines with Alkynes : Synthesis of Naphthalene, Bicyclo[5.3.0]decane and Cyclopentadiene Derivatives |
| 指導教授: |
吳耀庭
Wu, Yao-ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 三芳香基磷 、鈀催化 、炔類 、碳-氫鍵活化 、碳-磷鍵斷裂 |
| 外文關鍵詞: | C-P bond cleavage, Triarylphosphine, Alkyne, C-H bond activation, Palladium-catalyzed |
| 相關次數: | 點閱:147 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個新穎且有效的鈀催化反應已經被開發,藉由三芳香基磷產生碳-磷鍵斷裂提供苯基,並與不同的炔類化合物進行環化加成反應。當反應物為二芳香基取代炔類時,反應會產生多取代萘環化合物,此環化加成產物是由一分子的芳香基與兩分子的炔類所構成(1:2耦合產物)。據我們所知,這是第一個經由芳香環碳-磷鍵斷裂與芳香環碳-氫鍵活化來成功合成萘環結構的例子。此外,我們也發現三芳香基磷所提供的苯基不只可以用來建構萘環骨架,也可以藉由芳香環異構化形成萘環上的芳香環取代基。
另外,當三芳香基磷與二烷基取代炔類反應時,則會生成環戊二烯衍生物27和雙環[5.3.0]癸烷衍生物30。不同種類的炔類決定著產物的化學選擇性。在此鈀催化反應下,苯基會與三分子的2-丁炔耦合得到環戊二烯衍生物。然而,與4-辛炔和5-癸炔等則會產生另一種具有位置與立體選擇性的1:2耦合產物-雙環[5.3.0]癸烷衍生物。
雖然產率不佳仍有待加強,但我們也不外乎成功地開發了一個簡單而且直接的合成方式來建構萘、雙環[5.3.0]癸烷和環戊二烯衍生物等。
New and efficient palladium-catalyzed cycloadditions of triarylphos- phines and internal alkynes have been developed. Depending on the reaction conditions and reactants, triarylphosphines provide benzo or aryl sources through the aryl CP bond cleavage. When diarylacetylenes were used in this reaction, highly substituted naphthalenes were furnished from a benzo unit and two molecules of alkynes. To the best of our knowledge, this is the first example for the preparation of naphthalene core by one aryl CP bond cleavage and one aryl CH bond activation. It was also observed that the benzo source for the construction of the naphthalene core can come from the aryl substitutent in diarylalkenes through an isomerization. This would lead to generate two different naphthalene cycloadducts.
In contrast, reaction of triarylphosphines with dialkylacetylenes gave cyclopentadienes 27 and/or bicycle[5.3.0]decane derivatives 30. This chemoselectivity strongly depend alkynes utilized. The former cycloadducts were formed from an aryl unit and three molecules of 2-butyne. However, 4-octyne and 5-decyne selectively enhanced the generation of bicycle[5.3.0]decanes, which were produced from an aryl unit and two molecules of an internal alkyne after dearomatization.
Although the yields are not excellent, the simplicity and straightforward method for constructing naphthalene, bicycle[5.3.0]decane, and cyclo pentadiene derivatives have been successful developed.
1 Quin, L. D. A Guide to Organophosphorus Chemistry; John Wiley & Sons, 2000.
2 Garrou, P. E. Chem. Rev. 1985, 85, 171.
3 (a) Bradford, C. W.; Nyholm, R. S. J. Chem. Soc. Dalton Trans. 1973, 529. (b) Carty, A. J.; Taylor, N. J.; Smith, W. F. J. Chem. Soc. Chem. Commun. 1979, 750. (d) Foley, H. C.; Finch, W. C.; Pierpoint, C. G.; Geoffroy, G. L. Organometalhs 1982, 1 , 1379.
4 (a) Bellon, P. L.; Benedicenti, C.; Caglio, G.; Manassero, M. J. Chem. Soc. Chem. Commun. 1973, 946. (b) Lewin, M.; Aizenshtat, Z.; Blum, J. J. Organomet. Chem. 1980, 184, 255. (c) Michman, M.; Kaufman, V. D.; Nussbaum, S. J. Organomet. Chem. 1979, 182, 547.
5 (a) Coulson, D. R. J. Chem. Soc. Chem. Commun. 1968, 1530. (b) Dixon, K. R.; Rattray, A. D. Inorg. Chem. 1978, 17, 1099. (c) Nakamura, A.; Otsuka, S. Tetrahedron Lett. 1974, 463. (d) Glockling, F.; McBride, T.; Pollock, R. J. J. Chem. Soc. Chem. Commun. 1973, 650.
6 Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619.
7 Goel, A. B.; Richards, H. J.; Kyung, J. H. Inorg. Chim. Acta 1983, 76, L95.
8 Goel. A. B.; Richards, H. J.; Kyung, J. H. Tetrahedron Lett. 1984, 25, 391.
9 Goel, A. B. Inorg. Chim. Acta 1984, 84, L25.
10 Goel, A. B. Inorg. Chim. Acta 1984, 86, L77.
11 Kikukawa, K.; Yamane, T.; Takagi, M.; Matsuda, T. J. Chem. Soc. Chem. Commun. 1972, 695.
12 Yamane, T.; Kikukawa, K.; Takagi, M.; Matsuda, T. Tetrahedron 1973, 29. 955.
13 (a) Kikukawa, K.; Takagi, M.; Matsuda, T. Bull. Chem. Soc. Jpn. 1979, 52, 1493. (b) Kikukawa, K.; Yamane, T.; Ohbe, Y.; Takagi, M.; Matsuda, T. Bull. Chem. Soc. Jpn. 1979, 52, 1187.
14 Ryabov, A. D.; Yatsimirsky, A. K. J. Mol. Catal. 1978, 4, 449.
15 Hermann, W. A.; Broβmer, C.; Öfele, K.; Beller, M.; Fischer, H. J. Mol. Catal. 1995, 103, 133.
16 Asano, R.; Moritani, I.; Fujiwara, Y.; Teranishi, S. Bull. Chem. Soc. Jpn. 1973, 46, 2910.
17 Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 1101.
18 Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem. Int. Ed. 2005, 44, 6166.
19 施建全碩士論文: 國立成功大學 民國九十六年六月。
20 (a) Stein, R. A.; Knobler, C. Inorg. Chim. 1977, 16, 242. (b) Muetterties, E. L.; Alegranti, C. W. J. Am. Chem. Soc. 1972, 94, 6386.
21 (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-VCH: New York, 1996. (b) Watson, M. D.; FethtenkÖtter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267
22 (a) Whitesides, G. M.; Ehmann, W. J. J. Am. Chem. Soc. 1970, 92, 5625. (b) Herwig, W.; Metlesics, W.; Zeiss, H. J. Am. Chem. Soc. 1959, 81, 6203.
23 Yasukawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002, 124, 12680.
24 Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1996, 61, 6941.
25 (a) Sakakibara, T.; Tanaka, Y.; Yamasaki, T.-I. Chem. Lett. 1986, 797. (b) Wu, G.; Rheingold, A. L.; Feib, S. L.; Heck, R. F. Organometallics 1987, 6, 1941. (c) Tao, T.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F. Organometallics 1989, 8, 2550.
26 (a) Takahashi, T.; Hara, R.; Nishihara, Y.; Kotora M. J. Am. Chem. Soc. 1996, 118, 5154. (b) Takahashi, T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 2002, 124, 576.
27 Huang, W.; Zhou, X.; Kanno, K.i.; Takahashi T. Org. Lett. 2004, 6, 2429.
28 (a) Peña, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem., Int. Ed. 1998, 37, 2659. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Org. Chem. 2000, 65, 6944. (c) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280.
29 Y.-T. Wu, K.-H. Huang, C.-C. Shin, T.-C. Wu Chem. Eur. J. 2008, 14, 6697 .
30 Satoh, T.; Ogino, S.; Miura, M.; Nomura, M. Angew. Chem. Int. Ed. 2004, 43, 5063.
31 (a) Maguire, A. R.; Buckley, N. R.; O’Leary, P.; Ferguson, G. Chem. Commun. 1996, 22, 2595. (b) Maguire, A. R.; Buckley, N. R.; O’Leary, P.; Ferguson, G. J. Chem. Soc. Perkin Trans. 1 1998, 24, 4077.
32 (a) Ye, T.; McKervey, M. A. Chem.Rev. 1994, 94, 1091. (b) Buchner, E. Ber. 1896, 29, 106.
33 (a) Reinheimer, H.; Moffat, J.; Maitlis, P. M. J. Am. Chem. Soc. 1969, 91, 2285. (b) Calvo, C.; Hosokawa, T.; Reinheimer, H.; Maitlis, P. M. J. Am. Chem. Soc. 1972, 94, 3238. (c) Hosokawa, T.; Calvo, C.; Lee, H. B.; Maitlis, P. M. J. Am. Chem. Soc. 1973, 95, 4914. (d) Hosokawa, T.; Maitlis, P. M. J. Am. Chem. Soc. 1973, 95, 4924.
34 Nakamura, M.; Miki, M.; Majima, T. J. Chem. Soc. Perkin Trans. 2 2000, 7, 1447.
35 Tim, A.; Ram G, G. Canadian Journal of Chemistry 1982, 60, 716.
36 Richter, B.; Wolf, E.d.; Koten, G. V.; Deelman, B. J. J. Org. Chem. 2000, 65, 3885.
37 Hans Albert, B.; Manfred, F.;Reinhard, H.;Guenter, S.;Helmut G, Alt. Chem. Ber. 1984, 117, 2791.
38 Stephen, F.; Frank R, H. J. Chem. Soc. Perkin Trans. 1 1980, 2233.
39 Worrall, D. E. J. Am. Chem. Soc. 1930, 52, 2933.
40 Marcel, C.;Yves, B.;Gerard, G.;Paul. T. J. Org. Chem. 1991, 56, 3537.
41 Ziegler, C. B.; Heck, R. F. J. Org. Chem. 1978, 43, 2741.
42 (a) Larock, R. C.; Tian,Q. J. Org. Chem. 2001, 66, 7372. (b) Kawasaki,
S.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 6836.
43 Kitamura, T.; Yamane, M.; Lnoue. K.; Todaka, M.; Fukatsu, N.; Meng, Z.; Fujiwara, Y. J. Am. Chem. Soc. 1999, 121, 11674.
44 Liu, L.; Wang, Z.; Zhao, F.; Xi, Z. J. Org. Chem. 2007, 72, 3484.
45 鄭育松碩士論文: 國立成功大學 民國九十七年七月