| 研究生: |
陳林湋 Chen, Lin-Wei |
|---|---|
| 論文名稱: |
以可攜式落重撓度儀進行鋪面非破壞檢測之可行性研究 An Applicability Study of Non-Destructive Testing on Pavements Using a Portable Falling-Weight Deflectometer |
| 指導教授: |
柯永彥
Ko, Yung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 可攜式落重撓度儀 、鋪面非破壞性檢測 、PLAXIS 2D 、現地試驗 、施工成效檢驗 、應力影響範圍 |
| 外文關鍵詞: | portable falling-weight deflectometer, non-destructive testing of pavements, PLAXIS 2D, field tests, inspection of construction quality, influence range of stress |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了瞭解以可攜式落重撓度儀進行落重試驗能否適用於鋪面非破壞性檢測,本研究透過現地試驗與採用PLAXIS 2D進行之數值模擬進行探討。首先,進行既有文獻鋪面案例之數值模擬,並於已知土層性質之場址進行現地測試,藉此進行研究方法之可行性驗證。接著,再針對一假設機場跑道鋪面案例,以數值模擬方式檢視可攜式落重撓度儀對於鋪面結構分層施工檢驗之效果,並探討代表可檢測深度之應力影響範圍。模擬成果顯示,各分層力學性質在弱化幅度達25%或更高時,由可攜式落重撓度儀所測得之撓度能有效展現之;另一方面,可歸納出此案例之各分層材料應力影響範圍約介於1–3倍承重鈑直徑之間,以粒料基層或底層來說,可保守取50公分為可檢測深度參考值。最後,為了測試以可攜式落重撓度儀於既有鋪面面層施測能否反映基底層的材料性質差異,於實際道路鋪面進行現地試驗,並與直接於基底層施測之動態圓錐貫入儀所得結果進行比較。結果顯示,在可攜式落重撓度儀可檢測深度範圍內,鋪面結構基底層材料的力學性質差異確實能被顯現出來,但更深處的差異則不易被展現,故本方法應用於既有鋪面檢測有其限制。根據相關探討結果,本研究建議於進行鋪面施工成效檢驗時,可利用實際落重試驗所得撓度值與數值模擬正算分析所得撓度基準值相比對,此法相較於以反算分析推估分層材料彈性模數的方式能大幅減少計算時間,且於施工現場較易完成。
This study aimed to investigate the applicability of a portable falling-weight deflectometer (PFWD) to non-destructive testing on pavements through field tests and numerical simulation using PLAXIS 2D. Firstly, simulation of a pavement case in an existing literature was conducted, and field tests were performed at a site with known soil properties. Then, a hypothetical case of the airport runway pavement was simulated to examine the performance of PFWD in the inspection of construction quality of pavements and the influence range of stress. The results indicate that PFWD can effectively detect the degradation of mechanical properties of each layer with a decrement of 25% or more. The influence range of each tested layer in this case is approximately 1 to 3 times the diameter of the load plate. Finally, field tests using PFWD were conducted on actual road pavements, and the results were compared with those obtained from the dynamic cone penetrometer. The results show that the differences in mechanical properties of the base and subbase layers within the detection depth of PFWD can be revealed. Based on the discussions, it’s recommended that the actual deflection obtained from in-situ falling weight tests may be compared with the baseline deflection derived in advance by the forward analysis using numerical simulation in the inspection of construction quality of pavements. This is more efficient than the back calculation and more practical on site.
1.工程會(2020),瀝青混凝土路面施工及檢驗基準。
2.內政部(2022),建築物耐震設計規範及解說。
3.世合工程顧問(2023),20230414_北門路DCP報告。
4.林登峰、王和源、廖啟州(2004),輕便型落錘式撓度儀(PFWD)應用於鋪面量測之可行性評估,鋪面工程,2(3),52-62。
5.陳建旭、王慶雄(2011),Clegg衝擊試驗評估鋪面結構之成果分析,臺灣公路工程,30-44。
6.陳靖翔(2006),落重撓度儀檢測荷重與堅硬層深度對反算分析之影響。
7.經濟部中央地質調查所(2017),臺南市中級土壤液化潛勢地圖第一期建置暨地質改善委託技術服務(1A標)(106TN-ED005)。
8.AASHTO (2008). Mechanistic-Empirical Pavement Design Guide.
9.AASHTO (2014). Standard Method of Test for Density of Soil In-Place by the Sand-Cone Method.
10.ARA, Inc. (2004). NCHRP 1-37A _Guide for Mechanistic-Empirical Design of Pavement Structures.
11.ASTM (2016). D5874-16 Standard Test Methods for Determination of the Impact Value (IV) of a Soil.
12.ASTM (2018). D6951/D6951M-18 Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications.
13.ASTM (2020). E2583-07 Standard Test Method for Measuring Deflections with a Light Weight Deflectometer (LWD).
14.ASTM (2021). D4429-93 Standard Test Method for CBR (California Bearing Ratio) of Soils in Place (Withdrawn 2002).
15.Bentley (2021). PLAXIS2DCE-V21.01-03-Material-Models Manual.
16.Brown, S., & Pell, P. (1967). An experimental investigation of the stresses, strains and deflections in a layered pavement structure subjected to dynamic loads. Intl Conf Struct Design Asphalt Pvmts.
17.Chen, D.-H., Lin, D.-F., Liau, P.-H., & Bilyeu, J. (2005). A correlation between dynamic cone penetrometer values and pavement layer moduli. Geotechnical Testing Journal, 28(1), 42-49.
18.DIN (2012). 18134_Soil testing procedures testing equipment-Plate load test.
19.Duddu, S. R., & Chennarapu, H. (2022). Quality control of compaction with lightweight deflectometer (LWD) device: a state-of-art. International Journal of Geo-Engineering, 13(1). https://doi.org/10.1186/s40703-021-00171-2
20.FAA (2011). AC150_5370-11B_Use of Nondestructive Testing in the Evaluation of Airport Pavements.
21.FAA (2021). AC150_5320-6G_Airport Pavement Design and Evaluations.
22.FGSV (2009). Supplementary Technical Terms and Conditions of Contract and Guidelines for Earthworks in Road Construction ZTVE-StB 09.
23.FGSV (2012). Technical testing regulations for soil and rock in road construction TP BF-StB Part B 8.3.
24.Fleming, R., Matthew, W., & John, P. (2007). A review of the lightweight deflectometer (LWD) for routine insitu assessment of pavement material stiffness.
25.Huang, L.-S., & Kang, Y. V. (2010). Nondestructive evaluation of thickness and bearing capacity of roadway pavement structure. International Journal of Pavement Research and Technology, 3(6), 326.
26.Hudson, M., Idriss, I. M., & Beikae, M. (1994). USER'S Manual for QUAD4M.
27.Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 99(5), 421-427.
28.Kurzinfo. (2020). Falling Weight Deflectometer – FWD. https://www.bast.de/EN/Highway_Construction/Technology/FWD.html
29.Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the engineering mechanics division, 95(4), 859-877.
30.Nazarian, S. (2022). Building better road foundation by taking advantage of emerging technologies. 20th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE 2022), Sydney.
31.Nega, A., Nikraz, H., & Al-Qadi, I. L. (2016). Dynamic analysis of falling weight deflectometer. Journal of Traffic and Transportation Engineering (English Edition), 3(5), 427-437.
32.Ohta, Y., Kagami, H., Goto, N., & Kudo, K. (1978). Observation of 1-to 5-second microtremors and their application to earthquake engineering. Part I: Comparison with long-period accelerations at the Tokachi-Oki earthquake of 1968. Bulletin of the Seismological Society of America, 68(3), 767-779.
33.PavementInteractive. (2012). Flexible Pavement Mechanistic Models. https://pavementinteractive.org/reference-desk/design/structural-design/flexible-pavement-mechanistic-models/
34.Rahim, A., & George, K. (2003). Falling weight deflectometer for estimating subgrade elastic moduli. Journal of transportation engineering, 129(1), 100-107.
35.Sangghaleh, A., Pan, E., Green, R., Wang, R., Liu, X., & Cai, Y. (2014). Backcalculation of pavement layer elastic modulus and thickness with measurement errors. International Journal of Pavement Engineering, 15(6), 521-531.
36.Siddharthan, R., Norris, G. M., & Epps, J. A. (1991). Use of FWD data for pavement material characterization and performance. Journal of transportation engineering, 117(6), 660-678.
37.Stolle, D. (2002). Pavement displacement sensitivity to layer moduli. Canadian geotechnical journal, 39(6), 1395-1398.
38.Tawfik, M. M., & El-Mossallamy, Y. M. (2017). Application of the finite element method for investigating the dynamic plate loading test. Ain Shams Engineering Journal, 8(1), 39-49. https://doi.org/10.1016/j.asej.2015.08.011
39.TERRATESTLWD (2019). Manual Light Weight Deflectometer TERRATEST 9000 LWD.
40.US Army Corps of Engineers, Engineer Technical Letter No. 1110-2-339, March 1993.
41.Yoder, E. J., & Witczak, M. W. (1991). Principles of pavement design. John Wiley & Sons.
校內:2026-08-02公開