簡易檢索 / 詳目顯示

研究生: 黃千益
Huang, Chien-I
論文名稱: 鎳基182合金銲道於鹽酸溶液中之應力腐蝕破裂行為
Stress Corrosion Cracking Behavior of Alloy 182 Weld in Hydrochloric Acid Solution
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 136
中文關鍵詞: 慢應變速率拉伸試驗鎳基182合金外加電位應變速率均質化環境誘發破裂行為應力腐蝕破裂行為
外文關鍵詞: stress corrosion cracking, slow strain rate test, Alloy 182, strain rate, homogenization., environmentally-assisted cracking, applied potential
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同電位、應變速率及熱處理對鎳基182合金銲道,於0.05 M鹽酸水溶液中應力腐蝕破裂行為(stress corrosion cracking, SCC)的影響。利用慢應變速率拉伸試驗(slow strain rate test, SSRT)來評估應力腐蝕破裂的敏感性,拉伸試驗的應變速率範圍為8.3×10-6 s-1 ~ 8.3×10-8 s-1。
    由金相組織觀察結果發現,鎳基182合金銲道經1300℃/1h固溶處理,可改變顯微結構成為等軸晶粒的微觀組織,其尺寸大小約為100 ~ 200 μm,有效達到均質化的效果。此外經X-ray繞射分析、維式硬度量測結果顯示,熱處理會提高堆銲後 ,特別是(111)面的繞射強度、優選方位、結晶結構並增加硬度大小。而在空氣中進行拉伸試驗,發現經均質化之試片,其極限抗拉強度(ultimate tensile stress, UTS)增強約10 %,總延伸率(total percentage of elongation, TEL)更是提升50 %之多,有較佳的抗形變能力。然而,經均質化條件者,可能因熱處理過程,造成化學成分及結晶結構重組排列,於0.05 M HCl水溶液中顯現較高的金屬溶解速率,耐蝕性質呈現較差。
    經SSRT試驗結果顯示,未經熱處理及經1300℃/1h固溶處理之鎳基182合金銲道,控制在8.3×10-7 s-1的應變速率下,於鹽酸溶液中,在開路電位、活性轉鈍性及過鈍態的電位範圍,鎳基182合金銲道會發生應力腐蝕破裂行為(SCC);而在陰極電位下,拉伸行為表現為所有電位下者最低,顯示該材料於氫的影響下,有非常高的破裂敏感性,得知環境誘發破裂行為(environmentally-assisted cracking, EAC)與外加電位有非常密切的關係。
    而在-50 mVSCE的電位條件下,未經熱處理之鎳基182合金銲道,隨著應變拉伸速率的下降,抗應力腐蝕破裂行為更弱,呈現出氫誘發破裂(hydrogen assisted cracking, HAC)的機制,顯示氫於此破壞過程中扮演一個重要的角色。

    The effects of applied potential, strain rate and heat treatment on stress corrosion cracking (SCC) of Alloy 182 in 0.05 M hydrochloric acid solution were investigated. Slow strain rate tests (SSRT) were employed to evaluate the SCC resistance.
    Alloy 182 weld, with heat treatment, was also examined by three-dimensional metallgraph observation, X-ray diffraction, Vicker’s microhardness and SSRTs. All experimental results presented that Alloy 182 weld homogenized with 1300℃/1h heat treatment would make a transformation on microstructure, crystal structure, microhardness and tensile behavior. But the electrochemical behavior of homogenized Alloy 182 weld in 0.05 M HCl solution showed less corrosion resistance by potentiodynamic polarization curve measurements.
    Furthermore the SSRT results demonstrated that the cracking behavior of Alloy 182 weld with/without heat treatment was strongly dependent on the electrochemical potential. The results showed that Alloy 182 weld was most susceptible to cracking in 0.05 M hydrochloric acid solution under cathodic polarization condition. In the active-to-passive transition as well as in the transpassive potential regions, the weld also suffered environmentally-assisted cracking (EAC). However, in the passive potential region, the weld was immune to EAC.
    The SSRT results also exhibited the strain rate-dependent EAC behavior of Alloy 182 weld in 0.05 M HCl solution. At an applied potential of -50 mVSCE (in the active-to-passive transition region), the ductility decreased with decreasing strain rate, indicating the decrease in EAC resistance. The significant loss of ductility at a strain rate as low as 8.3×10-7 s-1 indicated that hydrogen-assisted cracking (HAC) participate in the cracking process under anodic polarization condition.

    摘要 I Abstract III 誌謝 V 總目錄 VI 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧及理論基礎 3 2.1 鎳基182合金 3 2.2 應力腐蝕簡介 4 2.3 鎳基182合金的應力腐蝕破裂性質 6 2.4 應力腐蝕與電位的關係 11 2.5 SCC及HAC破裂機制與拉伸應變速率的關係 13 第三章 實驗步驟與方法 20 3.1 材料組成與試片製備 20 3.2 金相組織觀察 21 3.3 X光繞射光譜分析 22 3.4 微硬度量測 22 3.5 電化學試驗 23 3.6 慢應變速率拉伸試驗 24 3.6.1 控制電位之影響 25 3.6.2 應變速率之影響 26 第四章 結果與討論 34 4.1 鎳基182合金之顯微組織結構 34 4.2 電化學試驗結果與討論 39 4.3 鎳基182合金銲道在鹽酸溶液中應力腐蝕破裂性質研究 44 4.3.1 外加電位之影響 52 4.3.1.1 開路電位下對應力腐蝕破裂的影響 52 4.3.1.2 陰極電位下對應力腐蝕破裂的影響 55 4.3.1.3 活性轉鈍性電位下對應力腐蝕破裂的影響 57 4.3.1.4 鈍態電位下對應力腐蝕破裂的影響 58 4.3.1.5 過鈍態電位下對應力腐蝕破裂的影響 60 4.3.2 應變速率之影響 77 4.3.3 熱處理之影響 89 4.3.3.1 外加電位之影響 89 第五章 綜合討論 104 5.1 熱處理對應力腐蝕破裂行為之影響 104 5.2 環境對應力腐蝕破裂行為之影響 106 5.3 應變速率對應力腐蝕破裂行為之影響 108 結論 118 Reference 122 自述 135

    [1] R. Dehmolaei, M. Shamanian, and A. Kermanpur, "Microstructural characterization of dissimilar welds between alloy 800 and HP heat-resistant steel," Materials Characterization, vol. In Press, Corrected Proof, 2008.
    [2] C. Jang, J. Lee, J. Sung Kim, and T. Eun Jin, "Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel," International Journal of Pressure Vessels and Piping, vol. In Press, Corrected Proof, 2007.
    [3] M. Sireesha, S. K. Albert, and S. Sundaresan, "Thermal cycling of transition joints between modified 9Cr-1Mo steel and Alloy 800 for steam generator application," International Journal of Pressure Vessels and Piping, vol. 79, p. 819, 2002.
    [4] M. Sireesha, V. Shankar, S. K. Albert, and S. Sundaresan, "Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800," Materials Science and Engineering A, vol. 292, p. 74, 2000.
    [5] M. Sireesha, S. K. Albert, V. Shankar, and S. Sundaresan, "A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800," Journal of Nuclear Materials, vol. 279, p. 65, 2000.
    [6] A. K. Bhaduri, G. Srinivasan, T. P. S. Gill, and S. L. Mannan, "Effect of aging on the microstructure and tensile properties of an alloy 800/9Cr-1Mo steel joint," International Journal of Pressure Vessels and Piping, vol. 61, p. 25, 1995.
    [7] R. A. Page, "Stress Corrosion Cracking of Alloy 600 and 690 and Nos. 82 and 182 Weld Metals in High Temperature Water," Corrosion, vol. 39, p. 409, 1983.
    [8] R. A. Page, "Stress Corrosion of I-182 Weld Metal in High Temperature Water - Effect of a Carbon Steel Couple," Corrosion, vol. 41, p. 338, 1985.
    [9] A. McMinn and R. A. Page, "Stress Corrosion Cracking of Inconel Alloys and Weldments in High-Temperature Water - Effect of Sulfuric Acid Addition," Corrosion, vol. 44, p. 239, 1988.
    [10] Q. Peng, T. Shoji, H. Yamauchi, and Y. Takeda, "Intergranular environmentally assisted cracking of Alloy 182 weld metal in simulated normal water chemistry of boiling water reactor," Corrosion Science, vol. 49, p. 2767, 2007.
    [11] NRC Information Notice 2004-08:Reactor Coolant Pressure Boundary Leakage Attributable to Propagation of Cracking in Reactor Vessel Nozzle Welds, Nuclear Regulatory Commission Office of Nuclear Reactor Regulation, Washington, D. C. 20555-0001, United States.
    [12] NRC Information Notice 2004-11:Cracking in Pressurizer Safety and Relief Nozzles and in Surge Line Nozzle, Nuclear Regulatory Commission Office of Nuclear Reactor Regulation, Washington, D. C. 20555, United States.
    [13] NRC Information Notice 2003-11, Supplement 1:Leakage Found on Bottom-mounted Instrumentation Nozzles, Nuclear Regulatory Commission Office of Nuclear Reactor Regulation, Washington, D. C. 20555, United States.
    [14] NRC Bulletin 2004-xx, Inspection of Alloy 82/182/600 Materials Used in the Fabrication of Pressurizer Penetrations and Steam Space Piping Connections at Pressurized-water Reactors, Washington, D. C. 20555, United States.
    [15] NRC Bulletin 2001-01, Circumferential Cracking of Reactor Pressure Vessel Head Penetration Nozzles, Washington, D. C. 20555, United States.
    [16] NRC Bulletin 2002-01, Reactor Pressure Vessel Head Degradation and Reactor Coolant Pressure Boundary IntegrityCoolant Pressure Boundary Integrity, Washington, D. C. 20555, United States.
    [17] P. L. Andresen, L. M. Young, P. W. Emigh, and R. M. Horn, "Stress Corrosion Crack Growth Rate Behavior of Ni alloys 182 and 600 in High Temperature Water," Corrosion/2002 Paper No. 02510, 2002.
    [18] L. G. Ljungberg and M. Stigenberg, "Stress Corrosion Cracking propagation in Low-Strength Nickel-Base Alloys in Simulated BWR Environments," in Proc. of the 8th Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, S. M. Bruemmer, ed., American Nuclear Society, La Grange Park, IL, p. 704, 1997.
    [19] D. D. Macdonald, H. Song, K. Makela, and K. Yoshida, "Corrosion Potential Measurements on Type 304 SS and Alloy 182 in Simulated Boiling-Water Reactor Environments," Corrosion, vol. 49, p. 8, 1993.
    [20] N. Saito, S. Tanaka, and H. Sakamoto, "Effect of Corrosion Potential and Microstructure on the Stress Corrosion Cracking Susceptibility of Nickel-Base Alloys in High-Temperature Water," Corrosion, vol. 59, p. 1064, 2003.
    [21] P. L. Andresen, "Observation and Prediction of the Effects of Water Chemistry and Mechanics on Environmentally Assisted Cracking of Inconels 182 Weld Metal and 600," Corrosion, vol. 44, p. 376, 1987.
    [22] P. L. Andresen, "Fracture Mechanics Data, Modeling of Environmental Cracking of Nickel-Based Alloys in High-Temperature Water," Corrosion, vol. 47, p. 917, 1991.
    [23] S. Kou, "Welding Metallurgy," A Wiley-Interscience publication, p. 9, 1987.
    [24] R.W. Staehle, “Stress Corrosion Cracking of Fe-Cr-Ni Alloy System,” Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., NATO, Brussels, Belgium, p. 223, 1971.
    [25] J. C. Scully, "The electrochemical parameters of stress-corrosion cracking," Corrosion Science, vol. 8, p. 513, 1968.
    [26] A. J. Forty and P. Humble, Philosophical Magazine, vol. 8, p.247, 1963.
    [27] A. J. McEvily and P. A. Bond, "On the Initiation and Growth of Stress Corrosion Cracks in Tarnished Brass," Journal of The Electrochemical Society, vol. 112, p. 141, 1965.
    [28] N. A. Nielsen, "Nature of Initial Corrosion of Stressed Austenitic Steel by Chloride Ions; Part 2 — Platinum Decoration of Active Sites," Corrosion, vol. 20, p. 105t, 1964.
    [29] H. H. Uhlig, in Physical Metallurgy of Stress Corrosion Fracture, T.N Rhodin, Ed., Interscience, p. 1, 1959.
    [30] C. L. Briant and E. L. Hall, "Microstructural Causes of Intergranular Corrosion of Alloys 82 and 182," Corrosion, vol. 43, p. 539, 1987.
    [31] C. L. Briant and E. L. Hall, "Grain Boundary Segregation in the Ni-Base Alloy 182," Metallurgical and Materials Transactions A, vol. 19, p. 137, 1988.
    [32] Q. J. Peng, H. Yamauchi, and T. Shoji, "Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis," Metallurgical and Materials Transactions A, vol. 34, p. 1891, 2003.
    [33] H. Yamauchi, Q. J. Peng, and T. Shoji, "Measurement of Compositional Profile of ID Facets by FEG-AES and its Relevance to IDSCC of Alloy 182 in a Simulated BWR Environment," Key Engineering Materials, vol. 261-263, p. 1011, 2004.
    [34] L. G. Ljungberg, A. Ortnas, P. Stahle, and J. L. Nelson, "Stress Corrosion Cracking Initiation in Alloys 600 and 182," Proc. 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, The Mineral, Metal & Materials Society, p. 379, 1993.
    [35] Y. S. Lim, H. P. Kim, M. K. Jung, and J. S. Kim, "Phase Analysis of the Precipitates in an Alloy 600/182 Weld," Solid State Phenomena, vol. 119, p. 111, 2007.
    [36] 游季陸, "鎳基182 合金銲道敏化現象之研究," 國立成功大學材料科學及工程學系碩士論文, 2002.
    [37] W.-T. Tsai, C.-L. Yu, and J.-I. Lee, "Effect of heat treatment on the sensitization of Alloy 182 weld," Scripta Materialia, vol. 53, p. 505, 2005.
    [38] 楊鎮豪, "鎳基182合金銲道於硫酸溶液中之應力腐蝕破裂行為," 國立成功大學材料科學及工程學系碩士論文, 2006.
    [39] P. L. Andresen and M. M. Morra, "Effect of Rising and Falling K Profiles on SCC Growth Rates in High-Temperature Water," Journal of Pressure Vessel Technology, vol. 129, p. 488, 2007.
    [40] Z. Lu and T. Shoji, "Unified Interpretation of Crack Growth Rates of Ni-base Alloys in LWR Environments " Journal of Pressure Vessel Technology, vol. 128, p. 138, 2006.
    [41] H. F. d. Jong, "Evaluation of the Constant Strain Rate Test Method for Testing Stress Corrosion Cracking in Aluminum Alloys," Corrosion, vol. 34, p. 32, 1978.
    [42] R. N. Parkins, "Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications", R. D. Kane, ed., ASTM, Philadephia, p.7, 1993.
    [43] G. R. Hoey, R. W. Revie, and R. R. Ramsingh, "Comparison of the Slow Strain Rate Technique and the NACE TM0177 Tensile Test for Determining Sulfide Stress Cracking Resistance," Materials Performance, vol. 26, p. 42, 1987.
    [44] R. W. Staehle, "Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys", R. W. Staehle et al, eds., NACE-5, NACE, Houston, p. 193, 1973.
    [45] R. N. Parkins, “Stress Corrosion Cracking of Low-strength Ferritic Steels”, Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed,. NATO, Brussels, Belgium, p. 167, 1971.
    [46] R. N. Parkins, "Stress Corrosion Cracking of Low Carbon Steels," Proceedings of Fundmental Aspects of Stress Corrosion Cracking,” R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., NACE, Houston, 1969.
    [47] C. D. Kim and B. E. Wilde, “A Review of the Constant Strain-Rate Stress Corrosion Cracking Test”, Stress Corrosion Cracking – The Slow Strain-Rate Technique, ASTM STP 665, G. M. Ugiansky and J. H. Payer, eds., American Society for Testing and Materials, p. 97, 1979.
    [48] H. Buhl, “Validity of the Slow Straining Test Method in the Stress Corrosion Cracking Research Compared with Conventional Testing Techniques”, Stress Corrosion Cracking – The Slow Strain-Rate Technique, ASTM STP 665, G. M. Ugiansky and J. H. Payer, eds., American Society for Testing and Materials, p. 333, 1979.
    [49] Annual Book of ASTM Standards, Designation E 112, ASTM, Philadelphia, p. 121, 1982.
    [50] K. Osozawa and H. J. Engell, "The Anodic Polarization Curves of Iron-Nickel-Chromium Alloys " Corrosion Science, vol. 6, p. 389, 1966.
    [51] 吳宗峰, "鎳基690合金在含硫代硫酸根水溶液中之電化學性質研究," 國立成功大學材料科學及工程學系碩士論文, 1997.
    [52] 吳宗峰, "鎳基600合金之敏化及電化學再活化特性研究," 國立成功大學材料科學及工程學系博士論文, 2001.
    [53] G. A. Knorovsky, M. J. Cieslak, T. J. Headley, A. D. Romig, and W. F. Hammetter, "INCONEL 718: A solidification diagram," Metallurgical and Materials Transactions A, vol. 20, p. 2149, 1989.
    [54] A. Machet, A. Galtayries, S. Zanna, L. Klein, V. Maurice, P. Jolivet, M. Foucault, P. Combrade, P. Scott, and P. Marcus, "XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy," Electrochimica Acta, vol. 49, p. 3957, 2004.
    [55] N. S. Mclntyre, D. G. Zetaruk, and D. Owen, "X-Ray Photoelectron Studies of the Aqueous Oxidation of Inconel-600 Alloy," Journal of The Electrochemical Society, vol. 126, p. 750, 1979.
    [56] J. B. Ferguson and H. F. Lopez, "Oxidation products of INCONEL alloys 600 and 690 in pressurized water reactor environments and their role in intergranular stress corrosion cracking " Metallurgical and Materials Transactions A, vol. 37, p. 2471, 2006.
    [57] P. Marcus and J. M. Grimal, "The Anodic Dissolution and Passivation of Ni-Cr-Fe Alloys Studied by ESCA," Corrosion Science, vol. 33, p. 805, 1992.
    [58] P. Marcus and J. M. Grimal, "The Antagonistic Roles of Chromium and Sulphur in The Passivation of Ni-Cr-Fe Alloys Studied by XPS and Radiochemical Techniques," Corrosion Science, vol. 31, p. 377, 1990.
    [59] K. Hashimoto and K. Asami, "XPS Study of Surface Film on Nickel Alloys in Hot Concentrated NaOH," Corrosion Science, vol. 19, p. 427, 1979.
    [60] A. Kawashima, K. Asami, and K. Hashimoto, "An XPS Study of Passive Films on Nickel and Alloy 600 in Acids," Corrosion Science, vol. 25, p. 1103, 1985.
    [61] R. S. Dutta, A. Lobo, R. Purandare, S. K. Kulkarni, and G. K. Dey, "Corrosion behavior of austenitic alloy 690 under anodic and cathodic potentials," Metallurgical and Materials Transactions A, vol. 33, p. 1437, 2002.
    [62] I. Betova, M. Bojinov, P. Kinnunen, T. Laitinen, P. Pohjanne, and T. Saario, "Mechanism of transpassive dissolution of nickel-based alloys studied by impedance spectroscopy and rotating ring-disc voltammetry," Electrochimica Acta, vol. 47, p. 2093, 2002.
    [63] M. Bojinov, G. Fabricius, P. Kinnunen, T. Laitinen, K. Ma¨kela, T. Saario, G. Sundholm, and K. Yliniemi, "Transpassive dissolution of Ni-Cr alloys in sulphate solutions--comparison between a model alloy and two industrial alloys," Electrochimica Acta, vol. 47, p. 1697, 2002.
    [64] M. Bojinov, G. Fabricius, P. Kinnunen, T. Laitinen, K. Ma¨kela¨, T. Saario, and G. Sundholm, "The mechanism of transpassive dissolution of Ni-Cr alloys in sulphate solutions," Electrochimica Acta, vol. 45, p. 2791, 2000.
    [65] M. Bojinov, I. Betova, G. Fabricius, T. Laitinen, R. R. d, and T. Saario, "The stability of the passive state of iron-chromium alloys in sulphuric acid solution," Corrosion Science, vol. 41, p. 1557, 1999.
    [66] I. Betova, M. Bojinov, and T. Tzvetkoff, "Oxidative dissolution and anion-assisted solubilisation in the transpassive state of nickel-chromium alloys," Electrochimica Acta, vol. 49, p. 2295, 2004.
    [67] E. Proverbio and P. Longo, "Failure mechanisms of high strength steels in bicarbonate solutions under anodic polarization," Corrosion Science, vol. 45, p. 2017, 2003.
    [68] H. Lukito and Z. Szklarska-Smialowska, "Susceptibility of medium-strength steels to hydrogen-induced cracking," Corrosion Science, vol. 39, p. 2151, 1997.
    [69] R. Li and M. G. S. Ferreira, "The thermodynamic conditions for hydrogen generation inside a stress corrosion crack," Corrosion Science, vol. 38, p. 317, 1996.
    [70] C.-I. Huang, C.-H. Yang, and W.-T. Tsai, "Environmentally-assisted Cracking Behavior of Alloy 182 Weld in Sulfuric Acid Solution," in NACE Corrosion 2008 Conference & Expo New Orleans, Louisiana, March 16-20, 2008.

    下載圖示 校內:2009-07-22公開
    校外:2009-07-22公開
    QR CODE