簡易檢索 / 詳目顯示

研究生: 黃弘儒
Huang, Hung-Ru
論文名稱: 中孔洞氧化矽空心球之散射機制與新型智慧窗簾之研究
The scattering mechanism of Mesoporous silica hollow sphere and the development of new type smart window
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 116
中文關鍵詞: 液晶中孔洞氧化矽空心球散射機制電子窗簾
外文關鍵詞: Liquid crystal, Mesoporous silica hollow sphere, Scattering mechanism, Smart window
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去幾年研究中,液晶最迷人的特質在於異向性,即是垂直液晶導軸方向與平行液晶導軸方向的物理特性(介電係數、折射係數……等)不同,由於這天生結構上差異,使得液晶在顯示器領域中,吸引學者們以及顯示器產業的注意力,但是擁有天生異向性特質,對摻雜奈米粒子或者是膠體粒子來說,卻是很難均勻分散在液晶中,因為液晶連續彈性體理論和拓樸缺陷,使得奈米粒子無法均勻混入到液晶,並且隨著時間演化,奈米顆粒會彼此聚集,然而,中孔洞氧化矽空心球卻是有機會解決顆粒聚集的人工材料,除此之外,可調式散射效應更能廣泛應用在其他領域中。
    這篇論文的主旨是研究氧化矽空心球散射機制和使得散射型元件的光電特性更為完美,中孔洞氧化矽空心球在肉眼以及光學顯微鏡尺度下,可以形成均勻混濁的暗態,相反地,在沒有中空結構以及表面無孔洞情況下,氧化矽實心球在肉眼以及光學顯微鏡尺度觀察,不能呈現均勻混濁的暗態。此外,隨著外加電場增加,散射區塊將會逐漸消失,就像是聚合物分散液晶(PDLC),根據觀察中孔洞氧化矽空心球特殊光學現象,我們提出在中孔洞氧化矽空心球散射模型,並且與聚合物分散液晶(PDLCs)和膽固醇型液晶(CLCs)互相做比較,由於中孔洞氧化矽空心球特殊的光電特性,為了改善電子窗簾工作效能,利用同時加入高分子聚合物以及手性分子來提升光電特性,除了量測穿透度之外,還量測中孔洞氧化矽空心球反應時間以及磁滯效應。
    為了想更了解中孔洞氧化矽空心球散射機制和周圍液晶排列方式,透過摻雜偶氮染料的方式,這是因為偶氮染料在光激發情況下,會瞬間轉動液晶排列,根據光異構化的偶氮染料,產生動態穿透率變化,可以推斷液晶分子動態響應行為還有驗證中孔洞氧化矽空心球散射模型,除此之外與聚合物分散液晶(PDLCs)和膽固醇型液晶(CLCs)互相做比較,此外,還有改變激發能量觀察中孔洞氧化矽空心球動態響應時間。

    Over the past several years of research liquid crystals (LCs), the most fascinating field is that the anisotropic characteristic, indicating the perpendicular direction of dielectric constant or refractive index is different from the direction of parallel. Due to the intrinsic anisotropic characteristic, the application of liquid crystal in the display field is attracting researchers and the display industry. However, the behavior of innate anisotropic fluid, such as nanoparticles or colloidal particles is hard to well disperse in LCs. As the restored elastic continuum of LCs and generated topological defects, the doped nanoparticles couldn’t uniformly disperse in LCs and will gradually aggregate with the time or applied voltage. However, Mesoporous silica hollow sphere (MPSHS) is a candidate artificial material to solve particles aggregation in LCs and also make the controllable scattering effect for further application.
    The subject of this thesis is to study the scattering phenomenon of MPSHSs and make a better performance of scattering devices, such as smart window. MPSHS-LCs exhibit uniform opaque in the naked eye and optical microscope images. Contrary, in the silica solid spheres (SSS) which without mesoporous on the surface of SSS and hollow structure, the opaque is not uniformly distributed in the naked eye and optical microscope images. In addition, with the increasing applied electric field, the dark section would be disappeared likely to the polymer dispersed liquid crystal. Noticing the particular phenomenon, we proposed the mechanism of light scattering and compare to the scattering phenomena of the polymer dispersed liquid crystals (PDLCs) and cholesteric liquid crystals (CLCs). According to the specific electro-optical behavior of MPSHSs, we improve the performance of the smart window and we also propose the mixture of polymer (NOA61) and chiral (S811) to enhance the electro-optical property of MPSHSs. Besides measuring the transmittance, we also measure the response time and hysteresis effect which involve the anchoring of MPSHSs
    In order to find out more detailed about the light scattering mechanism and the orientation of liquid crystal surrounding to the MPSHSs so we use the azo dye (Methyl Red) which could induce the transient reorientation of liquid crystal by photoisomerization. Based on the dynamics transmittance after the photoisomerzation of azo dye (Methyl Red), we could infer the reorientation of liquid crystal and the light scattering structure. In addition, we compare this phenomenon with PDLCs and CLCs. Moreover, the intensity of excitation laser energy is changed to observe the corresponding response about MPSHSs.

    Chapter 1 Introduction 1 1.1 Origin of Liquid crystal 1 1.2 Application and recent research 2 Chapter 2 Properties of Liquid Crystals 5 2.1 Classification of Liquid Crystals 5 2.1.1. Nematics 5 2.1.2. Smectics 6 2.1.3. Cholesterics 7 2.2 Physics of Liquid Crystals 8 2.2.1. Order parameter 8 2.2.2. Optical property 10 2.2.3. Dielectric property 12 2.2.4. Viscosity property 13 2.2.5. Elastic continuum theory 14 2.2.6. Surface anchoring 15 Chapter 3 Polymer and photosensitive materials in liquid crystal 19 3.1 Polymer Dispersed Liquid Crystals 19 3.1.1. Manufacture 19 3.1.2. Operation principle and the structure 20 3.1.3. Theories on light scattering 22 3.1.4. Optical transmittance property 25 3.1.5. Dynamic response 27 3.2 Polymer Stabilized Liquid Crystals 29 3.2.1. Manufacture 29 3.2.2. Operation principle and the structure 29 3.3 Photosensitive Materials 32 3.3.1. Light induced molecules reorientation effect 33 3.3.2. Photoisomerization effect 36 Chapter 4 Colloidal Particles and porous material in the liquid crystal 38 4.1 Colloidal particles 38 4.1.1 Two types of liquid crystal orientation around colloids 38 4.1.2 Sedimentation of colloidal particles 40 4.1.3 Levitation of colloidal particles 41 4.1.4 Linear electrophoresis of colloidal particles 42 4.1.5 Aggregation of Colloidal particles 43 4.2 Porous material 44 4.2.1 Introduction to the porous silicon (PSi) film 45 4.2.2 Electrical reorientation of LC molecules inside cylindrical pore 46 4.2.3 Synthetic hollow sphere material 48 Chapter 5 Experiments 49 5.1 General electro-optical characteristic measurement 49 5.1.1. The sample preparation 49 5.1.2. The experimental setup 53 5.2 Laser induced reorientational measurement 55 5.2.1. The sample preparation 55 5.2.2. The experimental setup 58 Chapter 6 Results and Discussion 60 6.1 The advantages of the Mesoporous silica hollow sphere (MPSHS) 60 6.2 The different diameter of MPSHS 61 6.3 The different concentration of photopolymer material in MPSHS-LC composite 73 6.4 The different concentration of chiral dopant in MPSHS-LC composite 80 6.5 The doping with and photopolymer chiral dopant in MHSS-LC composite 87 Chapter 7 Results and Discussion 91 7.1 The role of Methyl Red in the LC 91 7.2 The role of Methyl Red in the polymer composite (NOA61) 93 7.3 The role of Methyl Red in the chiral dopant (S811) 96 7.4 The role of Methyl Red in the solid silica sphere and MPSHSs 97 7.5 The role of Methyl Red in the different diameter of MPSHS 102 7.6 The intensity of the pumping beam 105 Chapter 8 Conclusion and prospection 111 References 113

    [1]. Reinitzer, Friedrich, "Beiträge zur Kenntniss des cholesterins". Monatshefte für Chemie (Wien) 9 (1): 421–441
    [2]. Lehmann, O. (1889). "Über fliessende Krystalle". Zeitschrift für Physikalische Chemie 4: 462–72.
    [3]. Sluckin, T. J.; Dunmur, D. A. and Stegemeyer, H. (2004). Crystals That Flow – classic papers from the history of liquid crystals. London: Taylor & Francis.
    [4]. Gray, G. W. (1962) Molecular Structure and the Properties of Liquid Crystals, Academic Press.
    [5]. Stegemeyer, H (1994). "Professor Horst Sackmann, 1921 – 1993". Liquid Crystals Today
    [6]. Iam-Choon Khoo & Shin-Tson Wu, Optics and nonlinear optics of liquid crystals
    [7]. P.G.de Gennes, The physics of liquid crystals (Oxford University Press, New York, 1993)
    [8]. W. Maier and A. Saupe: Z.Natruforsch., 13a, p.564(1958)
    [9]. W. Maier and A. Saupe: Z.Natruforsch., 16a, p.816(1961)
    [10]. Jan Jadżyn, Grzegorz Czechowski, and Danuta Bauman “Static and Dynamic Dielectric Polarization and Viscosity of AZ-Hexylcyanobiphenyl in the Isotropic and Nematic Phases”
    [11]. F.Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (Word Scientific, Singapore, 1997)
    [12]. G. Barbero and L. R. Evangelista, An Elementary Course on the Continuum Theory for Nematic Liquid Crystals (World Scientific, Singapore, 2000)
    [13]. S. Zumer, A. Golemme and J. W. Doane, “Light extinction in a dispersion of small nematic droplets”, J. Opt. Soc. Am. A6, 403 (1989)
    [14]. S. Zumer “Light extinction in a dispersion of small nematic droplets: anomalous-diffraction approach”, Phys. Rev. A37, 4006 (1988)
    [15]. J.D. Margerum, A.M.Lackner, J.H.Erdmann, and E.Sherman,” addressing factors for polymer dispersed liquid crystal displays”, Proc. SPIE 1455, 27(1991)
    [16]. J. W. Doane, J. L. West, J. B. Whitehead Jr., and D. S. Fredly, “Wide-angle-view PDLC displays”, SID Digest 21,224 (1990)
    [17]. B.G. Wu, J.H. Erdmann, and j. W. Doane, “Response times and voltage for PDLC LIGHT SHUTTERS”. Liq. Cryst. 5, 1453(1989)
    [18]. S.J. KLOSOWICZ and M. ALEKSANDER “Effect of polymer-dispersed liquid crystal morphology on its optical performance”OPTO-ELECTRONICS REVIEW 12(3), 305-3112 (2004)
    [19]. C.V. Rajaram and S.D. Hudson “Morphology of Polymer-stabilized Liquid Crystals” Chem. Mater. 1995, 7, 2300-2308
    [20]. Allender, D.W. and Zumer, S.,Bull.Am.Phys.Soc.31,691(1986)
    [21]. O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii and E. M. Terentjev, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, 54, 5198 – 5203
    [22]. P. Poulin, H. Stark, T. C. Lubensky and D. A. Weitz, Science,
    1997, 275, 1770 – 1773.
    [23]. Oleg D. Lavrentovich, “Transport of particles in liquid crystals” Soft Matter, 2014, 10, 1264
    [24]. H. N. W. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interactions, Springer, Dordrecht, 2011.
    [25]. Soft and fragile matter: Nonequilibrium dynamics, metastability and flow, ed. M. E. Cates and M. R. Evans, Edinburgh University, Edinburgh, 2000, p. 394.
    [26]. O. P. Pishnyak, S. Tang, J. R. Kelly, S. V. Shiyanovskii and O. D. Lavrentovich, Phys. Rev. Lett., 2007, 99, 127802.
    [27]. W. B. Russel, D. A. Saville and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, 1989, p. 526
    [28]. D. Voloschenko, O. P. Pishnyak, S. V. Shiyanovskii and O. D. Lavrentovich, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, 65, 060701.
    [29]. O. P. Pishnyak, S. V. Shiyanovskii and O. D. Lavrentovich, Phys. Rev. Lett., 2011, 106, 047801.
    [30]. O. P. Pishnyak, S. V. Shiyanovskii and O. D. Lavrentovich, J. Mol. Liq., 2011, 164, 132 – 142.
    [31]. I. Lazo and O. D. Lavrentovich, Philos. Trans. R. Soc. London, Ser. A, 2013, 371, 20120255
    [32]. O. D. Lavrentovich, I. Lazo and O. P. Pishnyak, Nature, 2010, 467, 947 – 950.
    [33]. H. Stark, Phys. Rep. 351, 387 (2001)
    [34]. B. I. Lev et al., Phys. Rev. E 65, 021709 (2002)
    [35]. F Mondiot” Colloidal aggregation and dynamics in anisotropic fluids”
    [36]. New developments in liquid crystals edited by Georgiy V. Tachenko
    [37]. Hyung, Guen Yoon, Soft matter, 2011,7,8770
    [38]. Jinwoo HAN, Journal of the Korean physical society, Vol43, No 1, 2003
    [39]. Rumiko Yamaguchi and Susumu Sato , Japanese Journal of applied physics, Vol30, No 4A, 1991
    [40]. Jinwoo HAN, Journal of the Korean physical society, Vol49, No 4, 2006
    [41]. 張家勝,”硬模板法合成中孔洞氧化矽空心球在液晶顯示器之應用”,國立成功大學化學研究所碩士論文,2013
    [42]. 林勺乃,”以表面活化法合成氧化矽空心球及核-殼結構奈米粒子”,國立成功大學化學研究所碩士論文,2015
    [43]. 黃家逸,”光敏材料於液晶的研究與其在光子元件之應用”,國立成功大學化學研究所碩士論文,2010

    無法下載圖示 校內:2020-01-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE