簡易檢索 / 詳目顯示

研究生: 葉昭呈
Ye, Jhao-Cheng
論文名稱: 氮化鎵電極光電解水產氫之光電化學特性研究
Photoelectrochemical Properties of GaN electrodes for Hydrogen Generation from Aqueous Water
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 氮化鎵光電化學氫氣
外文關鍵詞: GaN, Photoelectrochemical, Hydrogen
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用三五族氮化鎵材料製作光電解電池之工作電極光電解水產生氫氣。實驗設計上我們分別針對氮化鎵電極的載子濃度、氙燈的照光強度、氮化鎵材料的磊晶結構、氮化鎵電極的外部製程方面做不同的變化,分析在各種情況下的實驗結果,釐清氮化鎵材料光電解水產氫的反應機制,進而改善光電化學產氫的效率。
    首先,我們觀察不同載子濃度之n型氮化鎵的光電化學反應,發現光電流隨著載子濃度的增加而上升,推測主要原因來自於電阻率的影響,我們也改變氙燈的照光強度,發現光電流明顯隨著照光強度的增加而上升,同時藉由交流阻抗的分析發現,隨著照光強度的增加,其平帶電位有往正電位偏移之趨勢。此外,我們也改變氮化鎵的磊晶條件,分別做出自然粗化表面跟平坦表面這兩種氮化鎵,發現自然粗化結構的氮化鎵在吸收波段的反射率比平坦氮化鎵小且反應面積較大,但由於其電特性與晶體品質較差的關係,使得平坦氮化鎵的表現較佳。另外,我們也在氮化鎵電極表面上製作出不同間距的金屬浸入式歐姆電極設計,發現光電流隨著電極間距減少而上升,這是由於較密的金屬電極其載子汲取能力較好。最後我們希望能用較簡易的製程來做浸入式電極,因此將金屬電極材料換成氧化銦錫材料,如此便可省下在金屬電極上製作二氧化矽保護層的步驟,且氧化銦錫浸入式電極的壽命較長。

    Working electrodes of photoelectrolytic cells were built using the Gallium Nitride (GaN) to generate hydrogen gas through water splitting. To clarify the mechanism of water splitting reaction and promote the efficiency of hydrogen generation, we varied the carrier concentrations of GaN, the light intensities of the Xe lamp, the crystal structures of GaN, and the processes of ohmic contacts of the GaN working electrodes. Furthermore, the results were analyzed under different conditions.
    First, the photoelectrochemical reactions of n-GaN samples, which had different carrier concentrations, were observed. The photocurrent densities were enhanced as the carrier concentrations increased because of the resistivity of n-GaN. High resistivity of the materials can lead to low photocurrent densities. The light densities of the Xe lamp were also varied, and the photocurrent densities were enhanced as the light densities increased. By AC resistance analysis, we found that the flat-bend potential shifted to positive when the light intensities increased. Furthermore, different growing conditions were used to grow n-GaN samples with naturally roughened and flat surfaces. Although the reflectance of the naturally roughened n-GaN was lower than that of the flat n-GaN, and the working area of the naturally roughened n-GaN was larger than that of the flat n-GaN, the performance of the naturally roughened n-GaN was better than that of flat n-GaN. Because of the inferior electrical properties and crystal qualities of the naturally roughened n-GaN samples, flat n-GaN performed better. Furthermore, GaN working electrodes that were immersed in metal ohmic electrodes, which had different spaces on the GaN surfaces, were built. Experimental results indicate that the photocurrent densities increased as the spaces of immersed metal ohmic electrodes decreased. The decrease can be attributed to the samples with smaller ohmic electrode spaces, which can have higher electron collection efficiencies. Finally, because we preferred to use simpler processes to build immersed ohmic electrodes, we used ITO materials instead of metal materials to immerse ohmic electrodes. With this method, building SiO2 protection layers on the metal ohmic electrodes is unnecessary. In addition, the life span of ITO-immersed ohmic electrodes are longer than that of metal-immersed ohmic electrodes.

    目錄 摘要.........I 英文摘要.........II 誌謝.........IV 目錄.........V 表目錄.........VII 圖目錄.........VIII 第一章 序論.........1 1.1 前言.........1 1.2 研究動機與目的.........2 第二章 理論基礎.........5 2.1 半導體電化學理論簡介.........5 2.1.1 半導體的介紹及分類.........5 2.1.2 半導體/電解液界面平衡時的能帶分佈.........7 2.1.3 平帶電位.........8 2.2 光電化學電池簡介.........10 2.2.1 光電化學電池的發現.........10 2.2.2 光電化學電池的種類.........11 2.2.3 半導體光電解電池.........11 2.3 電化學交流阻抗頻譜.........13 2.3.1 電化學交流阻抗頻譜簡介.........13 2.3.2 等效電路系統之模擬.........16 2.3.3 常見電路元件之物理意義.........18 第三章 實驗裝置與研究方法.........34 3.1 實驗裝置.........34 3.1.1 光電化學量測裝置.........34 3.1.2 二極式與三極式系統簡介.........35 3.2 研究方法.........36 3.2.1 電流-電壓之特性量測.........36 3.2.2 交流阻抗量測與Mott-Schottky 分析.........37 3.3 光電化學元件(工作電極)製作.........39 3.3.1 光電化學元件結構.........39 3.3.2 製程步驟.........40 第四章 實驗結果與討論.........50 4.1 載子濃度對氮化鎵光電化學反應影響之分析.........50 4.2 照光強度對氮化鎵光電化學反應影響之分析.........52 4.3 電極密度對氮化鎵光電化學反應影響之分析.........54 4.4 自然粗化表面與平坦表面氮化鎵的光電化學反應之比較.........56 4.5 氧化銦錫浸入式電極於氮化鎵光電化學反應之應用.........59 第五章 結論與未來展望.........79 5.1 結論.........79 5.2 未來展望.........80 參考資料.........82

    [1]陳軍與袁華堂, “新能源材料”, 五南圖書出版股份有限公司, 2004.
    [2]K. Honda and A. Fujishima, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, vol. 238, pp.37-38, 1972.
    [3]M. Tomkiewicz and H. Fay, “Photoelectrolysis of water with semiconductors”, Appl. Phys., vol.18, no.1, pp.1-28, 1979.
    [4]S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical Investigation of the Gallium Nitride-Aqueous Electrolyte Interface”, J. Electrochem. Soc., vol.142, pp.L238-L240, 1995.
    [5]K. Fujii, T. Karasawa, and K. Oshawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol.44, pp.L543-L545, 2005.
    [6]Katsushi Fujii, Takeshi Karasawa and Kazuhiro Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol. 44,
    pp. L543-L545, 2005.
    [7]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, “Small band gap bowing in In1−xGaxN alloys”, Appl. Phys. Lett., vol. 80, pp. 4741-4743, 2002.
    [8]Simon Min Sze, “Semiconductor Devices: Physics and Technology”, John Wiley & Sons Inc, 2001.
    [9]Akihiko Kudo, “Photocatalyst Materials for Water Splitting”, Catalysis Surveys from Asia, vol.7, no.1, pp.31-38, 2004.
    [10]粘駿楠, “銅氧化物結構對其催化和光電化學反應性之影響”, 國立成功大學化學工程學研究所博士論文, 2006.
    [11]Allen J. Bard (Editor), Martin Stratmann (Editor), Stuart Licht (Editor), “Encyclopedia of Electrochemistry, Volume 6, Semiconductor Electrodes and Photoelectrochemistry”, John Wiley & Sons, Inc., 2002.
    [12]Katsushi Fujii, Masato Ono, Takashi Ito, Yasuhiro Iwaki, Akira Hirako, and KazuhiroOhkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys”, J. Electrochem. Soc., vol.154, Issue 2, pp. B175-B179 , 2007.
    [13]A.W. Bott, “Electrochemistry of Semiconductors”, Current Separations, vol.17, no.3, pp.87-91, 1998.
    [14]A. E. Becquerel, “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Comptes Rendus, vol.9, pp.561-567, 1839.
    [15]W.H.Brattain, C.G.B.Garret, “Semiconductor Surface Phenomena in Semiconducting Materials” , Proc. Conf. Univ. Reading, England, 37, 1951.
    [16]W.H.Brattain, C.G.B.Garret, “Physical Theory of Semiconductor Surfaces”, Phys. Rev., vol.99, Issue 2, pp.376-387, 1995.
    [17]H. Gerischer, “Semiconductor electrochemistry, in: Physical Chemistry. An Advanced Treatise”, Academic Press, New York, vol. 9A, 1970.
    [18]V A Myamlin and Yu V Pleskov, “THE ELECTROCHEMISTRY OF SEMICONDUCTORS”, Russian Chemical Reviews, vol.32, no.4, pp.207-223, 1963.
    [19]A.FUJISHIMA and K. HONDA, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, vol. 238, pp.37-38, 1972.
    [20]Arthur J. Nozik, “Physical Chemistry of Semiconductor−Liquid Interfaces”, J. Phys. Chem., vol.100, pp. 13061–13078, 1996.
    [21]黃鯤鵬, “以交流阻抗分析法量測高方向性氧化鋅奈米柱陣列電性之研究”, 國立成功大學化學工程研究所碩士論文, 2006.
    [22]Allen J. Bard, Larry R. Faulkner, “Electrochemical Methods: Fundamentals and Applications, 2nd Edition”, John Wiley & Sons, Inc., 2001.
    [23]陳廷彥, “含聚醚鏈環氧樹酯型高分子電解質之製備與其特性探討”, 國立成功大學化學工程學研究所碩士論文, 2002.
    [24]陳政緯, “半電池反應之交流阻抗研究鑭鈣鈷鐵氧化物陰極”, 國立台灣科技大學化學工程學研究所碩士論文, 2006.
    [25]E. Barsoukov, J. R. Macdonald, “Impedance Spectroscopy, Theory Experiment and Applications”, John Wiley & Sons, Inc., New York, 2005.
    [26]C.H. Hsu and F. Mansfeld, “Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance”, Corrosion, vol.57, no.09, pp.747-748, 2001.
    [27]鄭惇文, “毛細管電泳電化學偵測系統:以商業化元件光纖連接器改善毛細管與電極對準的問題”, 國立中山大學化學研究所碩士論文, 2001.
    [28]Peter T. Kissinger, William R. Heineman, “Laboratory Techniques in Electroanalytical Chemistry”, Marcel Dekker: USA, 1996.
    [29]顏政雄, “奈米金粒子修飾氮化鎵電極之光電化學特性及其在直接光照水分解產氫之應用”, 國立臺灣海洋大學光電科學研究所碩士論文, 2009.
    [30]Michael Grätzel, “Photoelectrochemical cells”, Nature, vol.414, pp.338-344, 2001.
    [31]Katsushi Fujii and Kazuhiro Oshawa, “Bias-Assisted H2 Gas Generation in HCl and KOH Solutions Using n-Type GaN Photoelectrode”, J. Electrochem. Soc., vol.153, Issue 3, pp.A468-A471, 2006.
    [32]Masato Ono, Katsushi Fujii, Takashi Ito and Yasuhiro Iwaki, Akira Hirako, Takafumi Yao, and Kazuhiro Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN”, J. Chem. Phys., Volume 126, Issue 5, pp. 054708-054708-7, 2007.
    [33]曾俊凱, “氮化鎵銦系列材料應用於再生能源-太陽能電池&光電化學水解氫氣元件之研究”, 國立成功大學光電科學與工程研究所碩士論文, 2009.
    [34]Shu-Yen Liu, J. K. Sheu, Chun-Kai Tseng, Jhao-Cheng Ye, K.H.Chang, M. L. Lee, and W. C. Laia, “Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with SiO2 Protection Layer on the Ohmic Contacts from the Electrolyte”, J. Electrochem. Soc., vol.157, Issue 2, pp. B266-B268, 2010.
    [35]Cherns D and Jiao CG., “Electron holography studies of the charge on dislocations in GaN”, Phys Rev Lett., vol.87, no.20, 2001.
    [36]Nils G. Weimann and Lester F. Eastman, “Scattering of electrons at threading dislocations in GaN”, JOURNAL OF APPLIED PHYSICS, vol.83, no.7, 1998.
    [37]Katsushi FUJII and Kazuhiro OHKAWA, “Photoelectrochemical Properties of p-Type GaN in Comparison with n-Type GaN”, Japanese Journal of Applied Physics, vol. 44, no.28, pp. L 909–L 911, 2005.
    [38]Naoki KOBAYASHI, Toru NARUMI and Ryusuke MORITA, “Hydrogen Evolution from p-GaN Cathode in Water under UV Light Irradiation”, Japanese Journal of Applied Physics, vol. 44, no.24, pp. L 784–L 786, 2005.
    [39]J. Li, J. Y. Lin and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes”, APPLIED PHYSICS LETTERS, vol. 93, no.16, pp. 162107, 2008.
    [40]K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells”, APPLIED PHYSICS LETTERS, vol. 96, no.5, pp. 052110, 2010.

    無法下載圖示 校內:2013-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE