簡易檢索 / 詳目顯示

研究生: 陳虹宇
Chen, Hung-Yu
論文名稱: 評估高精度經顱電刺激之電流分佈及腦部活化
Evaluating the Current Distribution and Cortical Activity of High-definition Transcranial Electrical Stimulation
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 36
中文關鍵詞: theta-burst 刺激近紅外光譜電流分佈皮質活動
外文關鍵詞: theta-burst stimulation (TBS), near infrared spectroscopy (NIRS), current distribution, cortical activity
相關次數: 點閱:112下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非侵入腦刺激 (NIBS) 是一種常用的神經調節方法。 Theta-burst 刺激 (TBS) 最初是經顱磁刺激 (TMS) 的波形。之前有人提出 TBS 以更少的刺激就比傳統的 rTMS更有效;但是,TBS 作為電力波形的影響力缺乏科學證據。我們旨在研究 (1) 經顱電刺激 (tES)以不同電流大小輸入時的電流分佈和 (2) 使用 TBS 波形的 HD-tES 對健康成人運動任務期間皮層活動的影響。方法:使用商用 Soterix 醫療 HD-ExploreTM 研究 HD-tES 的聚焦空間、電場和電流分佈。此外,八名健康受試者以一周的間隔完成了 單側TBS、雙側TBS 和假設實驗,為期 10 分鐘。通過功能性近紅外光譜(NIRS)在刺激實驗前(pre), 刺激期間(online)和刺激後 5 分鐘(post) 三個階段,記錄手指敲擊運動的血流動力學變化在前額葉皮層(PFC),感覺運動皮層(SMC)和頂葉皮層(PC)。結果:在所有條件下均觀察到磁場聚焦的情形。但是,電場分佈(V/m)隨著電流強度的增加而增加。在線 TBS 和 TBS 後的皮質活動顯著高於刺激前和假實驗條件下的皮質活動。結論:在使用TBS波形的HD-tES治療下,運動任務期間的皮質活動顯著增強。我們的實驗設計、TBS 治療和 NIRS 測量可作為未來研究和臨床應用的參考。

    Non-invasive brain stimulation (NIBS) has been proposed as a promising approach for neuro-modulation to improve neuroplasticity for patients with neurological disorders. Theta-burst stimulation (TBS) was originally designed for transcranial magnetic stimulation (TMS) which has been proved be more effective but with less dose than conventional rTMS. In our research, we intended to utilize TBS for high-density transcranial electrical stimulation (HD-tES) which has not been extensively investigated. Thus, the aims of this study are first to investigate the electric current distribution during HD-TDCS with different current inputs. Furthermore, the effects of HD-tES using TBS waveform on cortical activity during motor tasks in healthy adults was studied. The commercially available Soterix medical HD-ExploreTM was used to investigate the spatial focality, electric field, and current distribution of HD-tES. In addition, eight healthy subjects completed 10-min sessions of unilateral (uni_TBS) and bilateral TBS (bi_TBS) were compared with sham control group over primary motor cortex M1 with one-week interval. The hemodynamic changes in finger-tapping exercise were recorded by functional near-infrared spectroscopy (NIRS) at bilateral prefrontal cortex (PFC), sensory motor cortex (SMC), and parietal cortex (PC) in three phases of before intervention (pre), during intervention (online), and 5min after intervention (post). From current density simulation program, the spatial focality were observed in all conditions which the current distribution (V/m) were increased with the increase in the current intensity. The cortical activity was significantly greater at online uni_TBS and post bi_TBS than pre-treatments and those in sham condition. The cortical activity during motor task was significantly enhanced under the treatment of HD-tES using TBS waveform. Our experimental design provided a mean to observe the current distribution in HD-tES using TBS treatments to verify the safety issue. The utilization of unilateral and bilateral stimulations may provide a novel stimulation scheme for future neuromodulation for neuro-rehabilitation of stroke.

    摘要 IV Abstract V 誌謝 VI Table of Contents VII Lists of Tables IX List of Figures X Chapter 1 Introduction 1 1.1 Transcranial electrical stimulation 1 1.1.1 Transcranial direct current stimulation 1 1.1.2 High-definition tDCS (HD-tDCS) 2 1.1.3 Theta-burst waveform of electrical stimulation 3 1.1.4 Current flow of electrical stimulation 4 1.2 Near-infrared spectroscopy (NIRS) 5 1.2.1 General information of NIRS 5 1.2.2 Neurovascular coupling 7 1.2.3 NIRS study of event-related optical signal (EROS) 8 1.3 The motivation and aims of study 8 Chapter 2 Materials and Methods 9 2.1 Investigating the current distribution during HD-tES. 9 2.2 Cortical activation during finger-tapping tasks and theta-burst stimulation 11 2.2.1 Experimental design 11 2.2.2 Theta-burst stimulation (TBS) treatments 12 2.2.3 Near-infrared spectroscopy (NIRS) measurement 14 a) NIRScout system 14 b) NIRS montage design 15 c) Tasks for event-related optical signal (EROS) 16 d) NIRS data analysis 17 2.2.4 Statistical analysis 18 Chapter 3 Results 19 3.1 Electric current distribution during HD-tDCS 19 3.1.1 HD-tES apply over right M1 19 3.1.2 HD-tES apply over left M1 20 3.2 The effects of TBS on cortical activity during finger-tapping tasks 22 3.2.1 Subjects 22 3.2.2 Cortical activation during TBS and EROS tasks 23 a) Finger-tapping movement rate 23 b) Cortical activation 23 Chapter 4 Discussion and Conclusion 27 4.1 Electric current distribution during high-definition tES 27 4.2 Cortical activation of finger-tapping tasks with focal tES 28 4.3 Conclusion 31 REFERENCES 33

    Alam, M., Truong, D. Q., Khadka, N., & Bikson, M. (2016). Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol, 61(12), 4506-4521.
    Alam, M., Truong, D. Q., Khadka, N., Bikson, M. J. P. i. M. (2016). Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Biology, 61(12), 4506.
    Arora, Y., & Chowdhury, S. R. (2020). Cortical Excitability through Anodal Transcranial Direct Current Stimulation: a Computational Approach. Medical systems 44(2), 1-13.
    Besson, P., Muthalib, M., Dray, G., Rothwell, J., & Perrey, S. (2019). Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. Brain Res, 1710, 181-187.
    Chew, T., Ho, K. A., & Loo, C. K. (2015). Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities. Brain Stimul, 8(6), 1130-1137.
    Datta, A., Zhou, X., Su, Y., Parra, L. C., & Bikson, M. J. (2013). Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. Neural Engineering, 10(3), 036018.
    Davies, D. J., Su, Z., Clancy, M. T., Lucas, S. J., Dehghani, H., Logan, A., & Belli, A. J. (2015). Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: a review. Neurotrauma, 32(13), 933-941.
    Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci, 16(7), 838-844.
    Devor, A., Sakadžić, S., Srinivasan, V. J., Yaseen, M. A., Nizar, K., Saisan, P. A., . . . Metabolism. (2012). Frontiers in optical imaging of cerebral blood flow and metabolism. Cereb. Blood Flow Metab, 32(7), 1259-1276.
    Di Lazzaro, V., Dileone, M., Pilato, F., Capone, F., Musumeci, G., Ranieri, F., . . . De Waure, C. (2011). Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. Neurophysiology, 105(5), 2150-2156.
    Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., . . . Tonali, P. J. T. J. (2008). The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Physiology, 586(16), 3871-3879.
    Flöel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage, 85 Pt 3, 934-947.
    Flood, A., Waddington, G., & Cathcart, S. (2016). High-Definition Transcranial Direct Current Stimulation Enhances Conditioned Pain Modulation in Healthy Volunteers: A Randomized Trial. Pain, 17(5), 600-605.
    Gratton, G. F., Monica. (2003). The event‐related optical signal (EROS) in visual cortex: replicability, consistency, localization, and resolution. Psychophysiol, 40(4), 561-571.
    Huang, Y.-Z., Rothwell, J. C., Chen, R.-S., Lu, C.-S., & Chuang, W.-L. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin. Neurophysiol, 122(5), 1011-1018.
    Kempe, R., Huang, Y., & Parra, L. C. J. J. (2014). Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation. Neural Engineering, 11(2), 026003.
    Lafon, B., Rahman, A., Bikson, M., & Parra, L. C. (2017). Direct Current Stimulation Alters Neuronal Input/Output Function. Brain Stimul, 10(1), 36-45.
    Leff, D. R., Orihuela-Espina, F., Elwell, C. E., Athanasiou, T., Delpy, D. T., Darzi, A. W., & Yang, G.-Z. (2011). Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage, 54(4), 2922-2936.
    Li, Y.-T., Chen, S.-C., Yang, L.-Y., Hsieh, T.-H., Peng, C.-W. J. (2019). Designing and implementing a novel transcranial electrostimulation system for neuroplastic applications: A preliminary study. Rehabilitation Engineering, 27(5), 805-813.
    Lin, P.-Y., Lin, S.-I., Chen, J.-J. J. (2011). Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. Neurosystem & Rehabilitation Engineeing, 20(1), 78-84.
    Lin, T.-Y., Wu, J.-S., Lin, L. L., Ho, T.-C., Lin, P.-Y., Chen, J.-J. J. (2015). Assessments of muscle oxygenation and cortical activity using functional near-infrared spectroscopy in healthy adults during hybrid activation. Neurosystem & Rehabilitation Engineeing 24(1), 1-9.
    Miniussi, C., Cappa, S. F., Cohen, L. G., Floel, A., Fregni, F., Nitsche, M. A. (2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain stimulation, 1(4), 326-336.
    Miyai, I., Yagura, H., Hatakenaka, M., Oda, I., Konishi, I., & Kubota, K. (2003). Longitudinal optical imaging study for locomotor recovery after stroke. Stroke, 34(12), 2866-2870.
    Muthalib, M., Besson, P., Rothwell, J., & Perrey, S. (2018). Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation. Neuromodulation, 21(4), 348-354.
    Nikolin, S., Loo, C. K., Bai, S., Dokos, S., & Martin, D. M. (2015). Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. Neuroimage, 117, 11-19.
    Patel, R., Dawidziuk, A., Darzi, A., Singh, H., & Leff, D. (2020). Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. Neurophotonics, 7(2), 020901.
    Ragert, P., Camus, M., Vandermeeren, Y., Dimyan, M. A., & Cohen, L. G. (2009). Modulation of effects of intermittent theta burst stimulation applied over primary motor cortex (M1) by conditioning stimulation of the opposite M1. Neurophysiology, 102(2), 766-773.
    Russo, C., Souza Carneiro, M. I., Bolognini, N., & Fregni, F. (2017). Safety review of transcranial direct current stimulation in stroke. Neuromodulation: Technology at the Neural Interface, 20(3), 215-222.
    Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Pavia, J. M., Wolf, U., & Wolf, M. J. N. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85, 6-27.
    Sharma, G., & Chowdhury, S. R. (2018). Design of NIRS probe based on computational model to find out the optimal location for non-invasive brain stimulation. Medical sytsem, M42(12), 1-15.
    Suppa, A., Ortu, E., Zafar, N., Deriu, F., Paulus, W., Berardelli, A., & Rothwell, J. C. (2008). Theta burst stimulation induces after‐effects on contralateral primary motor cortex excitability in humans. Physiology, 586(18), 4489-4500.
    Turski, C. A., Kessler-Jones, A., Chow, C., Hermann, B., Hsu, D., Jones, J., . . . Ikonomidou, C. (2017). Extended Multiple-Field High-Definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restor Neurol Neurosci, 35(6), 631-642.
    Villamar, M. F., Wivatvongvana, P., Patumanond, J., Bikson, M., Truong, D. Q., Datta, A., & Fregni, F. J. (2013). Focal modulation of the primary motor cortex in fibromyalgia using 4× 1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation. Pain, 14(4), 371-383.
    Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul, 7(3), 468-475.
    Witt, S. T., Laird, A. R., & Meyerand, M. E. J. N. (2008). Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage, 42(1), 343-356.
    Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., . . . Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol, 127(2), 1031-1048.
    Yang, M., Yang, Z., Yuan, T., Feng, W., & Wang, P. (2019). A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol, 10, 58.
    Yaqub, M. A., Woo, S.-W., & Hong, K.-S. (2018). Effects of HD-tDCS on Resting-State Functional Connectivity in the Prefrontal Cortex: An fNIRS Study. Complexity, 2018, 1613402.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE