| 研究生: |
王威凱 Wang, Wei-Kai |
|---|---|
| 論文名稱: |
摻鎵之鉍銅硒氧化合物的合成及其熱電性質和空氣氣氛下化學穩定性之研究 The study on the synthesis, thermoelectric properties and chemical stability in air of Ga-doped BiCuSeO |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 熱電材料 、鉍銅硒氧 、鎵摻雜 、固相反應法 、熱穩定性 |
| 外文關鍵詞: | thermoelectric materials, BiCuSeO, Solid State Reaction, Ga-doped, thermal stability |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主軸為氧化物熱電材料鉍銅硒氧(BiCuSeO),鉍銅硒氧為P型半導體,擁有特殊的層狀結構,由絕緣層(Bi2O2)2+與導電層(Cu2Se2)2-沿C軸相互交疊而成,此結構造就了鉍銅硒氧的高席貝克係數與低熱傳導係數。但相對於傳統合金熱電材料,鉍銅硒氧的電導率偏低,因此諸多文獻透過摻雜欲改善其電導率。氧化物熱電材料的操作溫度大多處在高溫,鉍銅硒氧已被證實在高溫下極易與氧反應而有氧化、揮發、熱分解以及降解的現象。綜合以上所述,本研究將摻雜鎵(Ga)於鉍銅硒氧中的銅位置,並試圖探討此摻雜對於鉍銅硒氧於大氣氣氛下的熱穩定性以及熱電性質的影響。
本研究使用固相反應燒結法合成出摻雜鎵的鉍銅硒氧多晶塊材。並利用X光繞射儀、掃描式電子顯微鏡、熱重分析儀、霍爾量測系統、席貝克係數量測系統、四點探針電阻量測系統等儀器與分析方法,研究鉍銅硒氧在摻雜前後的結構、熱穩定性以及熱電性質的差異。
實驗結果顯示於750°C惰性氣氛下合成的BiCu1-xGaxSeO樣品,經XRD分析得知在低摻雜量時能維持純相,當鎵摻雜量高於5%時,二次相(Bi3Se4)開始析出,未摻雜之鉍銅硒氧樣品於大氣氣氛500℃下持溫1小時後其主相結構會變相形成二次相Bi7.38Cu0.62O11.69(PDF#49-1765)以及Bi2O3(PDF#78-1793),而摻雜鎵之樣品則仍能維持鉍銅硒氧主相結構。
大氣氣氛下進行的TGA分析得知未摻雜之鉍銅硒氧樣品在經過500℃持溫1小時後有著明顯的熱重增加,而摻雜鎵之樣品其熱重增加隨著摻雜量的增加而減少。SEM分析中亦能觀察到於大氣氣氛下500℃持溫1小時前後的表面形貌有著明顯差別,經EDS分析後得知未摻雜樣品於大氣氣氛500℃下持溫1小時後樣品表面會有鉍、硒揮發的現象,導致銅的成份偏多,而隨著樣品中鎵摻雜量的提升,此鉍、硒揮發的現象會逐漸減緩。
電性分析部分,席貝克分析主要受到摻雜量的影響,隨著鎵的摻雜量提升,其載子濃度增加促使席貝克係數降低,相反地,電導率則會隨載子濃度提升而有所增加,當鎵摻雜量為10%時,其電導率會從半導體型轉為金屬型,推測是由於高摻雜量導致能帶結構改變,因此影響其高溫的電導行為。在大氣氣氛500℃下持溫1小時前後,未摻雜之鉍銅硒氧樣品的席貝克係數急遽下降其電導行為也從半導體型轉為金屬型,而鎵摻雜樣品在大氣氣氛500℃下持溫1小時前後其席貝克係數趨勢仍維持一致,僅有些微數值的下降,電導行為在大氣氣氛500℃持溫1小時後仍保持半導體型。功率因子(PF)方面不論在大氣氣氛500℃持溫1小時破壞前或後,鎵摻雜量為1%的樣品其功率因子皆為最高,未經大氣氣氛500℃持溫1小時破壞之鎵摻雜量1%樣品在570K時其功率因子為0.08W/cmK2
In this work, the effects of Ga doping on the thermal stability and thermoelectric properties of BiCu1-xGaxSeO (x=0.0~0.10) were studied. The samples were prepared via solid state reaction technique. First, we tried different sintering temperatures to prepare the undoped samples in sealed quartz tube filled with argon. The optimal temperature was found to be 750 C, which was then used for the preparation of Ga-doped samples of a pure phase. The sintering process took place for 24 hours. The thermal stability in air of the prepared BiCu1-xGaxSeO was then studied by heating the samples at 500 C in air for 1 hour. The as-prepared samples and the samples after heating in air were characterized by a range of techniques, including XRD, SEM, EDS, TGA, etc. XRD results showed that the BiCuSeO phase was lost almost completely by the heating in air for the undoped samples, in contrast, the Ga-doped samples could keep the BiCuSeO phase with only tiny amount of the secondary phase, Bi3Se4, occurring after heating in air. TGA results showed that the weight gain for the Ga-doped samples was decreased considerably compared to the undoped samples, indicating that the Ga doping helped to prevent the samples from taking oxygen when they were exposed in air at high temperature. Seebeck coefficient measurements indicated that for the undoped samples, the heating in air resulted in a significant decrease in Seebeck coefficient, dropping from 400 to 50 V/K (measured at 575 K), while for the 1% Ga doped samples, such a deterioration in Seebeck coefficient was far less, which only varied from 310 to 236 V/K. The temperature dependence of electric conductivity showed that as-prepared samples of both undoped and Ga-doped BiCuSeO had the semiconductor behavior. However, after heating in air, the undoped samples switched to metallic behavior due to thermal decomposition, whereas the Ga-doped samples retained the semiconductor behavior. All the results confirmed that the Ga doping could effectively suppress the thermal decomposition of BiCuSeO in air while maintain similarly good thermoelectric property of pristine BiCuSeO.
Key words:thermoelectric materials, BiCuSeO, Ga-doped, thermal stability
1. M. Ohtaki, "Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion", Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter, 3, 10-15 (2010).
2. G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials", Nature Materials, 7, 105-114 (2008).
3. C. Han, Z. Li, and S. Dou, "Recent Progress in Thermoelectric Materials", Chinese Science Bulletin, 59, 2073-2091 (2014).
4. T. M. Tritt and M. A. Subramanian, "Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View", MRS Bulletin, 31, 188-198 (2006).
5. L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan, and N. Dragoe, "BiCuSeO Oxyselenides: New Promising Thermoelectric Materials", Energy & Environment Science, 7, 2900-2924 (2014).
6. B. Zhan, J. L. Lan, Y. C. Liu, J. X. Ding, Y. H. Lin, and C. W. Nan, "Research Progress of Oxides Thermoelectric Materials", Journal of Inorganic Materials, 29, 237-244 (2014).
7. X. Zhang and L. D. Zhao, "Thermoelectric Materials: Energy Conversion between Heat and Electricity", Journal of Materiomics, 1, 92-105 (2015).
8. A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh, and B. A. Popovkin, "New Layered Compounds with the General Composition (Mo) (Cuse), Where M = Bi, Nd, Gd, Dy, and BiOCuS Syntheses and Crystal Structure", Journal of Solid State Chemistry, 112, 189-191 (1994).
9. L. D. Hicks and M. S. Dresselhaus, "Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit", Physical Review B, 47, 12727-12731 (1993).
10. L. Pan, D. Bérardan, L. D. Zhao, C. Barreteau, and N. Dragoe, "Influence of Pb Doping on the Electrical Transport Properties of BiCuSeO", Applied Physics Letters, 102, 1-5 (2013).
11. T. J. Seebeck, "Magnetic Polarization of Metals and Minerals", Abhandlungen der Deutschen Akademie der Wissenchaften zu berlin, 265 (1822).
12. J. C. Peltier, "Nouvelles Experiences Sur La Caloricite Des Courans Electriques", Annales de Chimie et de Physique, LVI, 371-386 (1834).
13. W. Thomson, "On a Mechanical Theory of Thermo-Electric Currents", Proceedings of the Royal Society of Edinburgh, 3, 91-98 (2015).
14. T. J. Seebeck, "Magnetische Polarisation Der Metalle Und Erze Durch Temperature-Differenz", Abhandlungen der Deutschen Akademie der Wissenchaften zu berlin, 265-373 (1823).
15. 廖莉菱, "熱電材料應用於散熱微致冷晶片之技術開發", 國立臺灣師範大學機電科技研究所碩士學位論文, (2009).
16. 吳欣潔, 鄧評元, 顏婉婷, 蔡挹芬 "熱電材料相圖研究與應用", 工業材料雜誌, 386, (2019).
17. A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, "Thermoelectric Power Factor: Enhancement Mechanisms and Strategies for Higher Performance Thermoelectric Materials", Materials Science and Engineering: R: Reports, 97, 1-22 (2015).
18. H. S. Kim, W. Liu, G. Chen, C. W. Chu, and Z. Ren, "Relationship between Thermoelectric Figure of Merit and Energy Conversion Efficiency", Proceedings of the National Academy of Sciences, 112, 8205 (2015).
19. G. Nolas, J. Sharp, and H. J. Goldsmid, "Thermoelectrics-Basic Principles and New Materials Developments", (2001).
20. C. Kittel, "Introduction to Solid State Physics", Wiley, (2005).
21. D. Jiles, "Introduction to the Electronic Properties of Materials", (2001).
22. T. Caillat, J. P. Fleurial, and A. Borshchevsky, "Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3", Journal of Physics and Chemistry of Solids, 58, 1119-1125 (1997).
23. L. D. Hicks and M. S. Dresselhaus, "Thermoelectric Figure of Merit of a One-Dimensional Conductor", Physical review. B, Condensed matter, 47, 16631-16634 (1993).
24. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and Old Concepts in Thermoelectric Materials", Angewandte Chemie, 48, 8616-8639 (2009).
25. G. J. Snyder and E. Toberer, "Complex Thermoelectric Materials", Nature materials, 7, 105-114 (2008).
26. Y. Liu, L. D. Zhao, Y. Liu, J. L. Lan, W. Xu, F. Li, B. P. Zhang, D. Bérardan, N. Dragoe, Y. H. Lin, C. W. Nan, J. Li, and H. Zhu, "Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies", American Chemical Society, 133, 4 (2011).
27. M. Yasukawa, K. Ueda, and H. Hosono, "Thermoelectric Properties of Layered Oxyselenides La1−xSrxCuOSe (X=0 to 0.2)", Journal of Applied Physics, 95, 3594-3597 (2004).
28. L. N. Kholodkovskaya, L. G. Akselrud, A. Kusainova, V. Dolgikh, and B. A. Popovkin, "BiCuSeO: Synthesis and Crystal Structure", Materials Science Forum, 133-136, 693-696 (1993).
29. J. Li, J. Sui, Y. L. Pei, C. Barreteau, D. Bérardan, N. Dragoe, W. Cai, J. Q. He, and L. D. Zhao, "A High Thermoelectric Figure of Merit Zt > 1 in Ba Heavily Doped BiCuSeO Oxyselenides", Energy & Environment Science, 5, 8543-8547 (2012).
30. J. Sui, J. Li, J. He, Y. L. Pei, D. Bérardan, H. Wu, N. Dragoe, W. Cai, and L. D Zaho, "Texturation Boosts the Thermoelectric Performance of BiCuSeO Oxyselenides", Energy & Environment Science, 6, 2916-2920 (2013).
31. X. Zhang, C. Chang, Y. Zhou, and L. D. Zhao, "BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective", materials, 10, 1-16 (2017).
32. A. Bhaskar, R. T. Lai, K. C. Chang, and C. J. Liu, "High Thermoelectric Performance of BiCuSeO Prepared by Solid State Reaction and Sol-Gel Process", Scripta Materialia, 134, 100-104 (2017).
33. Y. Liu, L. D. Zhao, Y. Zhu, Y. C. Liu, F. Li, M. J. Yu, D. B. Liu, W. Xu, Y. H. Lin, and C. W. Nan, "Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO Via a Dual-Doping Approach", Advanced Energy Materials, 6, 1502423 (2016).
34. F. Li, T. R. Wei, F. Y. Kang, and J. F. Li, "Thermal Stability and Oxidation Resistance of BiCuSeO Based Thermoelectric Ceramics", Journal of Alloys and Compounds, 614, 394-400 (2014).
35. C. Barreteau, D. Berardan, and N. Dragoe, "Studies on the Thermal Stability of BiCuSeO", Journal of Solid State Chemistry, 222, 53-59 (2015).
36. T. Sato, H. Kohri, and T. Yagasaki, "Thermoelectric Properties and Thermal Stability of BiCuSeO", Journal of Electronic Materials, 45, 5521-5525 (2016).
37. L. D. Zhao, D. Bérardan, Y. L. Pei, C. Byl, L. P. Gaudart, and N. Dragoe, "Bi1−xSrxCuSeO Oxyselenides as Promising Thermoelectric Materials", Applied Physics Letters, 97, 092118-092118 (2010).
38. F. Li, J. F. Li, L. D. Zhao, K. Xiang, Y. Liu, B. P. Zhang, Y. H. Lin, C. W. Nan, and H. M. Zhu, "Polycrystalline BiCuSeO Oxide as a Potential Thermoelectric Material", Energy & Environment Science, 5, 7188-7195 (2012).
39. Y. L. Pei, J. Q. He, J. F. Li, F. Li, Q. J. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, and L. D. Zhao, "High Thermoelectric Performance of Oxyselenides: Intrinsically Low Thermal Conductivity of Ca-Doped BiCuSeO", NPG Asia Materials, 5, e47 (2013).
40. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. L. Pei, and L. D. Zhao, "Thermoelectric Properties of Mg Doped P-Type BiCuSeO Oxyselenides", Journal of Alloys and Compounds, 551, 649-653 (2013).
41. C. Barreteau, D. Bérardan, L. D. Zhao, and N. Dragoe, "Influence of Te Substitution on the Structural and Electronic Properties of Thermoelectric BiCuSeO", Journal of Materials Chemistry A, 1, 2921-2926 (2013).
42. J. L. Lan, Y. C. Liu, B. Zhan, Y. H. Lin, B. P. Zhang, X. Yuan, W. Q. Zhang, W. Xu, and C. W. Nan, "Enhanced Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics", Advanced Materials, 25, 5086-5090 (2013).
43. Y. C. Liu, J. F. Liu, B. P. Zhang, and Y. H. Lin, "Thermoelectric Properties of Ni Doped P-Type BiCuSeO Oxyselenides", Engineering Materials, 602-603, 906-909 (2014).
44. J. Li, J. Sui, Y. L. Pei, X. F. Meng, D. Bérardan, N. Dragoe, W. Caia, and L. D. Zhao, "The Roles of Na Doping in BiCuSeO Oxyselenides as a Thermoelectric Material", Journal of Materials Chemistry A, 2, 4903-4906 (2014).
45. Y. L. Pei, H. J. Wu, D. Wu, F. S. Zheng, and J. Q. He, "High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3d Modulation Doping", Journal of the American Chemical Society, 136, (2014).
46. S. D. N. Luu and P. Vaqueiro, "Thermoelectric Properties of BiOCu1−xMxSe (M = Cd and Zn)", Semiconductor Science and Technology 29, 1-5 (2014).
47. G. K. Ren, M. Butt, Y. C. Liu, J. L. Lan, Y. H. Lin, C. W. Nan, F. Fu, and X. F. Tang, "Enhanced Thermoelectric Performance of Zn-Doped Oxyselenides: BiCu1−xZnxSeO", Physica Status Solidi (A) Applications and Materials, 211, 1-5 (2014).
48. Z. Li, C. Xiao, S. J. Fan, Y. Deng, W. S. Zhang, B. J. Ye, and Y. Xie, "Dual Vacancies: An Effective Strategy Realizing Synergistic Optimization of Thermoelectric Property in BiCuSeO", Journal of the American Chemical Society 137, 1-8 (2015).
49. Y. C. Liu, J. X. Ding, B. Xu, J. L. Lan, Y. H. Zheng, B. Zhan, B. P. Zhang, Y. H. Lin, and C. W. Nan, "Enhanced Thermoelectric Performance of La-Doped BiCuSeO by Tuning Band Structure", Applied Physics Letters, 106, 1-5 (2015).
50. G. K. Ren, S. Butt, C. C. Zeng, Y. C. Liu, B. Zhan, J. L. Lan, Y. H. Lin, and C. W. Nan, "Electrical and Thermal Transport Behavior in Zn-Doped BiCuSeO Oxyselenides", Journal of Electronic Materials, 44, 1627-1631 (2015).
51. Y. C. Liu, Y. H. Zheng, B. Zhan, K. Chen, S. Butt, B. P. Zhang, and Y. H. Lin, "Influence of Ag Doping on Thermoelectric Properties of BiCuSeO", Journal of the European Ceramic Society, 35, 845-849 (2015).
52. M. Y. Zhang, J. Y. Yang, Q. H. Jiang, L. W. Fu, Y. Xiao, Y. B. Luo, D. Zhang, Y. D. Cheng, and Z. W. Zhou, "Multi-Role of Sodium Doping in BiCuSeO on Highthermoelectric Performance", Journal of Electronic Materials, 44, 2849-2855 (2015).
53. S. Mizuno, M. Ishizawa, H. Fujishiro, T. Naito, H. Katsui, and T. Goto, "Ball Milling Effects for Induced Carriers and Reduced Grain Size on Thermoelectric Properties in Bi1−xSrxCuSeO", Japanese Journal of Applied Physics, 55, 1-7 (2016).
54. M. U. Farooq, S. Butt, K. W. Gao, Y. C. Zhu, X. Q. Sun, X. L. Pang, S. U. Khan, F. Mohmed, A. Mahmood, N. Mahmood, and W. Xu, "Cd-Doping a Facile Approach for Better Thermoelectric Transport Properties of BiCuSeO Oxyselenides", RSC Advances, 6, 33789-33797 (2016).
55. C. L. Hsiao and X. D. Qi, "The Oxidation States of Elements in Pure and Ca-Doped BiCuSeO Thermoelectric Oxides", Acta Materialia, 102, 88-96 (2016).
56. M. K. Han, Y. S. Jin, B. K. Yu, W. J. Choi, T. S. You, and S. J. Kim, "Sulfur to Oxygen Substitution in BiOCuSe and Its Effect on the Thermoelectric Properties", Journal of Materials Chemistry A, 4, 13859-13865 (2016).
57. Y. C. Liu, Y. M. Zhou, J. L. Lan, C. C. Zeng, Y. H. Zheng, B. Zhan, B. P. Zhang, Y. H. Lin, and C. W. Nan, "Enhanced Thermoelectric Performance of BiCuSeO Composites with Nanoinclusion of Copper Selenides", Journal of Alloys and Compounds, 662, 320-324 (2016).
58. Y. Z. Sun, C. C. Zhang, C. M. Cao, J. X. Fu, and L. M. Peng, "Enhanced Thermoelectric Properties in BiCuSeO Oxyselenides Via Zn and S Dual-Site Substitution", Journal of Electronic Materials, 46, 5909-5915 (2017).
59. Y. Z. Sun, C. C. Zhang, C. M. Cao, J. X. Fu, and L. M. Peng, "Enhanced Thermoelectric Properties and Electronic Structures of P-Type BiCu1−xAgxSeO Ceramics", Ceramics International, 43, 6117-6123 (2017).
60. S. Das, R. Chetty, K. Wojciechowski, S. Suwas, and R. C. Mallik, "Thermoelectric Properties of Sn Doped BiCuSeO", Applied Surface Science, 418, 238-245 (2017).
61. B. Feng, G. Q. Li, Y. H. Hou, C. C. Zhang, C. P. Jiang, J. Hu, Q. S. Xiang, Y. W. Li, Z. He, and X. A. Fan, "Enhanced Thermoelectric Properties of Sb-Doped BiCuSeO Due to Decreased Band Gap", Journal of Alloys and Compounds, 712, 386-393 (2017).
62. G. K. Ren, S. Y. Wang, Y. C. Zhu, K. Ventura, X. Tan, W. Xu, Y. H. Lin, J. H. Yang, and C. W. Nan, "Enhancing Thermoelectric Performance in Hierarchically Structured BiCuSeO by Increasing Bond Covalency and Weakening Carrier-Phonon Coupling", Energy & Environment Science, 10, 1590-1599 (2017).
63. Q. Wen, C. C. Chang, L. Pan, X. T. Li, T. Yang, H. H. Guo, Z. Wang, J. Zhang, F. Xu, Z. D. Zhang, and G. D. Tang, "Enhanced Thermoelectric Performance of BiCuSeO by Increasing Seebeck Coefficient through Magnetic Ion Incorporation", journal of Materials Chemistry A, 5, 13392-13399 (2017).
64. B. Feng, G. Q. Li, Z. Pan, X. M. Hu, P. H. Liu, Y. W. Li, Z. He, and X. A. Fan, "Synergistic Effects of Bi Deficiencies and Fe-Doping on the Thermoelectric Properties and Hardness of BiCuSeO Ceramics", Journal of the Ceramic Society of Japan, 126, 699-705 (2018).
65. A. Achour, K. Chen, M. J. Reece, and Z. R. Huang, "Enhanced Thermoelectric Performance of Cs Doped BiCuSeO Prepared through Eco-Friendly Flux Synthesis", Journal of Alloys and Compounds, 735, 861-869 (2018).
66. B. Feng, G. Q. Li, Z. Pan, Y. H. Hou, C. C. Zhang, C. P. Jiang, J. Hu, Q. S. Xiang, Y. W. Li, Z. He, and X. A. Fan, "Effect of Ba and Pb Dual Doping on the Thermoelectric Properties of BiCuSeO Ceramics", Materials Letters, 217, 189-193 (2018).
67. B. Feng, G. Q. Li, Z. Pan, X. M. Hu, P. H. Liu, Z. He, Y. W. Li, and X. A. Fan, "Enhanced Thermoelectric Performance in BiCuSeO Oxyselenides Via Ba/Te Dual-Site Substitution and 3d Modulation Doping", Journal of Solid State Chemistry, 266, 297-303 (2018).
68. J. D. Lei, W. B. Guan, D. Zhang, Z. Ma, X. Y. Yang, C. Wang, and Y. X. Wang, "Isoelectronic Indium Doping for Thermoelectric Enhancements in BiCuSeO", Applied Surface Science, 473, 985-991 (2019).
69. S. Das, S. M. Valiyaveettil, K. H. Chen, S. Suwas, and R. C. Mallik, "Thermoelectric Properties of Pb and Na Dual Doped BiCuSeO", AIP Advances, 9, 1-7 (2019).
70. F. Li, M. Ruan, Y. X. Chen, W. T. Wang, J. T. Luo, Z. H. Zheng, and P. Fan, "Enhanced Thermoelectric Properties of Polycrystalline BiCuSeO Via Dual-Doping in Bi Sites", Inorganic Chemistry Frontiers, 6, 799-807 (2019).
校內:2024-08-30公開