| 研究生: |
陳南傑 Chen, Nan-Chieh |
|---|---|
| 論文名稱: |
鐵硫錯合物之合成與鑑定:鐵疊氮化合物的合成 Syntheses and Characterization of Iron Thiolate Complexes: the isolation of an Iron Azide Complex |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 高價鐵 、鐵硫化合物 |
| 外文關鍵詞: | iron thiolate complex, iron azide complex, high valent iron |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這份研究中我們嘗試去探討高價鐵在多硫配位環境下的化學,所以我們分別利用tris(thiolato)phosphine ([PS3”]H3)以及bis(thiolato)phosphine ([PS2”]H2)配位基與鐵二價及鐵三價起始物進行反應。我們合成並純化出包含iron(III)-azide、bis(ligand) iron(III) 、bis(ligand) iron(IV)等三種鐵硫化合物。這些化合物同時也利用許多儀器加以鑑定,例如核磁共振光譜、紫外光/可見光光譜、K-edge X-ray吸收光譜以及電噴灑游離與循環伏安法等。這些化合物也經由X-ray繞射鑑定出結構。化合物1 [FeIIIPS3”N3][PPh4](1) 是一個不常見的鐵三價與疊氮鍵結的例子。其中心鐵金屬以雙三角錐的結構分別和tris(thiolato)phosphine四芽配位基與疊氮離子鍵結。化合物2 [FeIII(PS2”)2][PPh4](2)和化合物3 [FeIV(PS2”)2](3) 分別是鐵三價bis(ligand) 與鐵四價bis(ligand) 的物質。此兩種化合物中心鐵金屬皆為六配位的八面體結構。此外,為了得到高價鐵氮化合物如FeV≣N 或FeIV=NH 等結構,我們利用化合物1 [FeIIIPS3”N3][PPh4](1) 在Rayonet光化學反應器下進行了光分解反應。
In our effort to explore the high valent iron chemistry a S-rich ligation environment, we utilized tris(thiolato)phosphine ligand and bis(thiolato)phosphine ligand, [PS3”]H3 and [PS2”]H2, respectively, to react with ion(II) and iron(III) strating materials. Three iron-thiolate complexes including one iron(III)-azide species, a bis(ligand) iron(III) complex and a bis(ligand) iron(IV) complex have been synthesized in a pure form. They have been also characterized by various techniques such as NMR, UV-Vis-NIR, and K-edge X-ray absorption spectroscopies, as well as ESI-MS and Cyclic Voltammetry. In addition, the structures were also analyzed by X-ray crystallography. First complex, [FeIIIPS3”N3][PPh4](1), is a rare example of an azide bound iron(III) species. The metal center adopts a trigonal bipyramidal geometry by binding to a tetradentate title ligand and an azide ion. The second complex, [FeIII(PS2”)2][PPh4](2), is a bis(ligand) of iron(III) complex and the third one, [FeIV(PS2”)2](3), is bis(ligand) of iron(IV) complex. The last two complexes both have six-coordinated octahedral iron centers. In order to generate high-valent iron nitride complexes such as FeV≣N or FeIV=NH, the photolysis of [FeIIIPS3”N3][PPh4](1) was carried out by using Rayonet Photochemical Reactor.
References
1. H. Beinert, R. H. Holm, and E. Münck, Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. Science 1997, 277, 653-659.
2. M. Merkx, D. A. Kopp, M. H. Sazinsky, J. L. Blazyk, J. Müller, and S. J. Lippard, Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins. Angew. Chem. Int. Ed. 2001, 40, 2782-2807.
3. M. Costas, J.-U. Rohde, A. Stubna, R. Y. N. Ho, L Quaroni, E. Munck, and L. Que, Jr., A Synthetic Model for the Putative FeIV2O2 Diamond Core of Methane Monooxygenase Intermediate Q. J. Am. Chem. Soc. 2001, 123, 12931-12932.
4. I. G. Denisov, T. M. Makris, S. G. Sligar, and I. Schlichting, Structure and Chemistry of Cytochrome P450. Chem. Rev. 2005, 105, 2253-2277.
5. K. Chen, M. Costas, J. Kim, A. K. Tipton, and L. Que, Jr., Olefin Cis-Dihydroxylation versus Epoxidation by Non-Heme Iron Catalysts: Two Faces of an FeIII-OOH Coin. J. Am. Chem. Soc. 2002, 124, 3026-3035.
6. M. Costas, M. P. Mehn, M. P. Jensen, and L. Que, Jr., Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates. Chem. Rev. 2004, 104, 939-986.
7. A.-A. Nfflria, G. D. Serens, M. Bernd, B. Eckhard, W. Karl, and; N. Frank, The Geometric and Electronic Structure of [(cyclam-acetato)Fe(N)]+: A Genuine Iron(v) species with a Ground-State Spin S=1/2. Angew. Chem. Int. Ed. 2005, 44, 2908-2912.
8. J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam, L. Que Jr., Crystallographic and Spectroscopic Characterization of a Nonheme Fe(IV)=O Complex. Science 2003, 299, 1037-1039.
9. C. Aldaga, I. A. Gromov, I. Garcıa-Rubiob, K. v. Koenigc, I. Schlichting, B. Jauna, and D. Hilvert, Probing the role of the proximal heme ligand in cytochrome P450cam by recombinant incorporation of selenocysteine. Proceedings of the National Academy of Sciences 2009, 106, 5481-5486.
10. I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G. A. Petsko, S. G. Sligar, The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science 2000, 287, 1615-1622.
11. W. Nam and Y. M. Goh, Significant Electronic Effect of Porphyrin Ligand on the Reactivities of High-Valent Iron(IV) Oxo Porphyrin Cation Radical Complexes. Inorg. Chem. 1998, 38, 914-920.
12. M. Newcomb and Z. Pan, Kinetics and Mechanism of Oxidation Reactions of Porphyrin-Iron(IV)-Oxo Intermediates. Inorg. Chem. 2007, 46, 6767-6774.
13. A. J. McGown, W. D. Kerber, H. Fujii, and D. P. Goldberg, Catalytic Reactivity of a Meso-N-Substituted Corrole and Evidence for a High-Valent Iron-Oxo Species. J. Am. Chem. Soc. 2009, 131, 8040-8048.
14. M. D. Fryzuk and B. A. Mackay, Dinitrogen Coordination Chemistry: On the Biomimetic Borderlands. Chem. Rev. 2004, 104, 385-401.
15. O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard, and D. C. Rees, Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor. Science 2002, 297, 1696-1700.
16. J. Schimpl, H. M. Petrilli, and P. E. Blochl, Nitrogen Binding to the FeMo-Cofactor of Nitrogenase. J. Am. Chem. Soc. 2003, 125, 15772-15778.
17. I. Dance, The Mechanistically Significant Coordination Chemistry of Dinitrogen at FeMo-co, the Catalytic Site of Nitrogenase. J. Am. Chem. Soc. 2007, 129, 1076-1088.
18. J. Kastner and P. E. Blochi, Ammonia Production at the FeMo Cofactor of Nitrogenase: Results from Density Functional Theory. J. Am. Chem. Soc. 2007, 129, 2998-3006.
19. A. Hennige and D. Sellmann, Direct Proof of trans-Diazene in Solution by Trapping and Isolation of the Trapping Products. Angew. Chem. Int. Ed. 1997, 36, 276-278.
20. Y. Chen, Y. Zhou, P. Chen, Y. Tao, Y. Li, and J. Qu, Synthesis, Structure, and Catalytic N-N Bond Cleavage of Hydrazines on Diiron Centers. J. Am. Chem. Soc. 2008, 130, 15250-15251.
21. J. Chatt, J. R. Dilworth, and R. L. Richards, Recent Advances in the Chemistry of Nitrogen Fixation. Chem. Rev. 1978, 78, 589-625.
22. B. M. Hoffman, D. R. Dennis, and L. C. Seefeldt, Climbing Nitrogenase: Toward a Mechanism of Enzymatic Nitrogen Fixation. Accounts of Chemical Research 2009, 42, 609-619.
23. M. P. Hendrich, W. Gunderson, R. K. Behan, M. T. Green, M. P. Mehn, T. A. Betley, C. C. Lu, and J. C. Peter, On the feasibility of N2 fixation via a single-site FeI/FeIV cycle. Proceedings of the National Academy of Sciences 2006, 103, 17107-17112.
24. G. Ertl, Elementary Steps in Heterogeneous Catalysis. Angew. Chem. Int. Ed. Engl. 1990, 29, 1219-1227.
25. K. Nakamoto and W.-D. Wagner , Resonance Raman Spectra of Nitridoiron( V) Porphyrin Intermediates Produced by Laser Photolysis. J. Am. Chem. Soc. 1989, 111, 1590-1597.
26. G. A. Craig, M. Bernd , B. Eckhard, W. Thomas, and W. Karl, Mononuclear (Nitrido)iron(V) and (Oxo)iron(IV) Complexes via Photolysis of [(cyclam-acetato)FeIII(N3)]+ and Ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in Water/Acetone Mixtures. Inorg. Chem. 2000, 39, 5306-5317.
27. J. J. Scepaniak, C. S. Vogel, M. M. Khusniyarov, F. W. Heinemann, K. Meyer, and J. M. Smith, Synthesis, Structure, and Reactivity of an Iron(V) Nitride. Science 2011, 331, 1049-1052.
28. X. Shan and L. Que, Jr., High-valent nonheme iron-oxo species in biomimetic oxidations. Jornal of Inorganic Biochemistry 2006, 100, 421-433.
29. J. England, E. R. Farquhar, Y. Guo, M. A. Granswick, K. Ray, E. Munck, and L. Que, Jr., Characterization of a Tricationic Trigonal Bipyramidal Iron(IV) Cyanide Complex, with a Very High Reduction Potential, and Its Iron(II) and Iron(III) Congeners. Inorg. Chem. 2011, 50, 2885-2896.
30. S. Shaik, W. Lai, H. Chen, and Y. Wang, The Valence Bond Way: Reactivity Patterns of Cytochrome P450 Enzymes and Synthetic Analogs. Accounts of Chemical Research 2010, 43, 1154-1165.
31. F. T. de Oliverira, A. Chanda, D. Banerjee, X. Shan, S. Mondal, L. Que Jr., E. L. Bominaar, E. Munck, and T. J. Collins, Chemical and Spectroscopic Evidence for an FeV-Oxo Complex. Science 2007, 315, 835-838.
32. A. Dey and A. Ghosh, “True” Iron(V) and Iron(VI) Porphyrins: A First Theoretical Exploration. J. Am. Chem. Soc. 2002, 124, 3206-3207.
33. L. E. Grove, J. K. Hallmann, J. P. Emerson, J. A. Halfen, and T. C. Brunold, Synthesis, X-Ray Crystallographic Characterization, and Electronic Structure Studies of a Di-Azide Iron(III) Complex: Implications for the Azide Adducts of Iron(III) Superoxide Dismutase. Inorg. Chem. 2008, 47, 5762-5774.
34. C. Vogel, F. W. Heinemann, J. Sutter, C. Anthon, and K. Meyer, An Iron Nitride Complex. Angew. Chem. 2008, 47, 2721-2724.
35. S. Konar, E. Zangrando, M. G. B. Drew, T. Mallah, J. Ribas, and N. R. Chaudhuri, Syntheses, Structural Analyses, and Magneto-Structural Correlations of Three Polymeric Fe(II) Complexes with Azide Ligand. Inorg. Chem. 2003, 42, 5966-5973.
36. J. J. Ellison, A. Nienstedt, S. C. Shoner, D. Barnhart, J. A. Cowen, and J. A. Kovacs, Reactivity of Five-Coordinate Models for the Thiolate-Ligated Fe Site of Nitrile Hydratase. J. Am. Chem. Soc. 1998, 120, 5691-5700.
37. M. Karsten, B. Eckhard, M. Bernd, W. Thomas, and W. Karl, Photolysis of cis- and trans-[FeIII(cyclam)(N3)2]+ Complexes: Spectroscopic Characterization of a Nitridoiron(V) Species. J. Am. Chem. Soc. 1999, 121, 4859-4876.
38. Y. Zhang, W. A. Hallows, W. J. Ryan, J. G. Jones, G. B. Carpenter, and D. A. Sweigart, Models for Steric Interactions in Heme Proteins. Structures of the Five-Coordinate Complex Iron(III) Tetraphenylporphyrin Azide and Its Six-Coordinate 1:l Adducts with 1-Methylimidazole and 1,2-Dimethylimidazole. Inorg. Chem. 1994, 33, 3306-3312.
39. J. J. Scepaniak, J. A. Young, R. P. Bontchev, and J. M. Smith, Formation of Ammonia from an Iron Nitrido Complex. Angew. Chem. Int. Ed. 2009, 48, 3158-3160.
40. Y.-F. Song, J. F. Berry, B. Eckhard, B. Eberhard, W. Thomas, and W. Karl, Iron Complexes of New Pentadentate Ligands Containing the 1,4,7-Triazacyclononane-1,4-diacetate Motif. Spectroscopic, Electro-, and Photochemical Studies. Inorg. Chem. 2007, 46, 2208-2219.
41. T. Petrenko, S. D. George, N. Aliaga-Alcalde, E. Bill, B. Mienert, Y. Xiao, Y. Guo, W. Sturhahn, S. P. Cramer, W. Karl, and F. Neese, Characterization of a Genuine Iron(V)-Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations. J. Am. Chem. Soc. 2007, 129, 11053-11060.
42. G. Izzet, E. IShow, J. Delaire, C. Afonso, J.-C. Tabet, and A. Proust, Photochemical Activation of an Azido Manganese-Monosubstituted Keggin Polyoxometalate: On the Road to a Mn(V)-Nitrido Derivative. Inorg. Chem. 2009, 48, 11865-11870.
43. P. Perze-Lourido, J. Romero, J. A. Garcia-Vazquez, J. Castro, A. Sousa, L. Cooper, J. R. Dilworth, R. L. Richards, Y. Zheng, J. Z. Zubieta, Synthesis and characterisation of iron and cobalt complexes with phosphinothiolate ligands. Inorganica Chimica Acta 2003, 356, 193-202.