簡易檢索 / 詳目顯示

研究生: 陳怡琇
Chen, I-Hsiu
論文名稱: 酶聚合寡聚胺酸合成二氧化矽膠體粒子與金屬奈米粒子/中孔洞二氧化矽及其觸媒應用
Chemoenzymaticly Prepared Oligopeptides for Synthesis of Silica Colloidal Particles and Metal Nanoparticles/Mesoporous Silicas and Their Application as Catalyst
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 酶聚合寡聚胺酸中孔洞二氧化矽金屬奈米粒子
外文關鍵詞: chemo-enzymatic synthesis, oligopeptide, mesoporous silica, metal nanoparticles
相關次數: 點閱:69下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提供一個簡單、低汙染之水相製程,透過控制寡聚胺酸組成、四乙氧基矽烷濃度、金屬前驅物濃度與種類,合成出二氧化矽/寡聚胺酸膠體粒子、中孔洞二氧化矽與金屬奈米粒子/二氧化矽複合材料。首先利用波蘿蛋白酶聚合出賴胺酸與酪胺酸共聚物與賴胺酸與苯丙胺酸共聚物之寡聚胺酸,透過控制四乙氧基矽烷濃度進行動態水解縮聚反應,調控合成之二氧化矽/寡聚胺酸膠體粒子之二氧化矽含量,並間接調控粒徑介於150~430奈米,等電點介於3.2~4.2。高溫鍛燒後得到中孔洞二氧化矽,比表面積介於173~630 m2 g-1,孔洞大小介於3~5nm,為寡聚胺酸之β-摺板作為模板形成之孔隙。進一步利用寡聚胺酸上具還原金屬離子能力,成功將金和銀奈米粒子擔載在二氧化矽/寡聚胺酸膠體粒子上,再透過賈凡尼置換反應將低電動勢之銀奈米粒子部分置換成高電動勢之鈀奈米粒子。高溫鍛燒後得到金屬奈米粒子/二氧化矽複合材料,實驗結果顯示金屬奈米粒子具還原對硝基苯酚之觸媒效果。此外,不同金屬前驅物濃度與金屬種類,也會影響金屬奈米粒子形成之還原性、粒徑大小和分散性。

    In this study, we report the facile green synthesis of oligopepeptides, silica/peptide colloidal particles, mesoporous silicas and metal/silica hybrid materials. Chemoenzymatic synthesis of peptides is a clean chemistry technique that allows fast prodution under mild conditions. Here, we synthesized oligo(L-lysine-co-L-tyrosine) [oligo(KY)] and oligo(L-lysine-co-L-phenylalanine) [oligo(KF)] by bromelain, as well as characterizing in terms of yield, molecular weight , and composition of the oligopeptides. The silica/peptide colloidal particles can be simply fabricated by silica mineralization of oligo(KY) and oligo(KF). Tuning the tetraethyl orthosilicate (TEOS) concentration caused the size of the silica/peptide colloidal particles between 150 and 430 nm, and isoelectric point (pI) between 3.2 and 4.2. After removing the oligopeptide, mesoporous silicas exhibited pore size between 3 and 5 nm by replication of sheet-like peptides. In addition, the as-prepared silica/peptide colloidal particles served as reducing agents for the nucleation of metal nanoparticles (NPs). Next, the Ag/Pd alloys-based silica hybrid materials were obtained through the galvanic replacement reaction. After calcination, the metal/silica hybrid materials were obtained. The experimental data revealed that the metal/silica hybrid materials showed reliable catalytic activity in reducing 4-nitrophenol (4-NP) with a pseudo-first-order reaction rate.

    摘要…………………………………………………………………………………. I Extended Abstract…………………………………………………………………... II 誌謝……………………………………………………………………………… XIII 目錄……………. ……………………………………………………………….. XIV 表目錄…………………………………………………………………………... XVII 圖目錄………………………………………………………………………….. XVIII 第一章 緒論………………………………………………………………………... 1 1.1前言………………………………………………………………………... 1 1.1.1奈米複合材料………………………………………………………. 1 1.1.2寡聚胺酸……………………………………………………………. 1 1.2研究動機與目的…………………………………………………………... 1 第二章 文獻回顧…………………………………………………………………... 3 2.1 聚胺基酸………………………………………………………………….. 3 2.1.1胺基酸簡介…………………………………………………………. 3 2.1.2 蛋白質結構………………………………………………………… 4 2.2 酶聚合(Chemoenzymatic Polymerization)……………………………. 6 2.2.1反應機制(Reaction Mechanism)………………………………... 6 2.2.2酶聚合使用之酵素…………………………………………………. 7 2.3 二氧化矽………………………………………………………………….. 7 2.4.1二氧化矽水解縮合反應……………………………………………. 8 2.4.2矽溶膠 (Colloidal Silica)…………………………………………... 9 2.4 金屬奈米粒子…………………………………………………………… 11 2.4.1 金屬奈米粒子合成……………………………………………….. 11 2.4.2 賈凡尼置換反應 (Galvanic Replacement Reaction)…………….. 11 2.4.3 奈米金屬粒子與中孔洞二氧化矽觸媒應用…………………….. 12 第三章 實驗方法…………………………………………………………………. 14 3.1 實驗藥品………………………………………………………………… 14 3.2 實驗儀器與原理………………………………………………………… 15 3.2.1液態核磁共振儀(NMR)……………………………………….. 15 3.2.2基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF)……….. 15 3.2.3穿透式電子顯微鏡(TEM)…………………………………….. 16 3.2.4傅立葉轉換紅外線光譜儀(FT-IR)……………………………. 16 3.2.5紫外光/可見光分光光度計(UV-Vis Spectrophotometer)…….. 18 3.2.6熱重分析儀(TGA)……………………………………………... 18 3.2.7動態光散射粒徑分析儀(DLS)……………………………………. 19 3.2.8 X光繞射儀(XRD)………………………………………………… 19 3.2.9比表面積及孔隙測定儀(BET)……………………………………. 20 3.2.10感應耦合電漿質譜儀(ICP-MS)…………………………………. 23 3.3 酶聚合寡聚胺酸 (Oligopeptide)………………………………………... 25 3.4二氧化矽材料之合成……………………………………………………. 26 3.4.1 寡聚胺酸自組裝………………………………………………….. 26 3.4.2 中孔洞二氧化矽之製備………………………………………….. 26 3.5金屬奈米粒子/二氧化矽複合材料之製備……………………………… 26 3.5.1金奈米粒子/二氧化矽與銀奈米粒子/二氧化矽複合材料之製備. 26 3.5.2銀鈀雙金屬奈米粒子/二氧化矽複合材料之製備……………….. 27 3.6二氧化矽材料之性質分析………………………………………………. 27 3.6.1 二氧化矽/寡聚胺酸之粒徑與介達電位…………………………. 27 3.6.2 中孔洞二氧化矽之BET分析…………………………………… 27 3.7金屬奈米粒子/二氧化矽複合材料之性質分析………………………… 28 3.7.1 金屬粒子之粒徑分析…………………………………………….. 28 3.7.2金屬奈米粒子/二氧化矽複合材料之觸媒應用………………….. 28 第四章 實驗結果與討論…………………………………………………………. 29 4.1寡聚胺酸之合成分析……………………………………………………. 29 4.1.1寡聚胺酸之聚合度與分子量……………………………………... 29 4.2二氧化矽複合膠體粒子之合成分析……………………………………. 39 4.2.1 二氧化矽複合膠體粒子之粒徑與界達電位分析 ………………..39 4.2.2二氧化矽複合膠體粒子之FT-IR與TGA分析 ………………….44 4.2.3 中孔洞二氧化矽之BET分析 ……………………………………47 4.3金屬奈米粒子/二氧化矽複合材料之合成與其觸媒應用 ………………51 4.3.1 金屬奈米粒子/二氧化矽複合材料之合成與粒徑分析 ………….51 4.3.2 金屬奈米粒子/二氧化矽複合材料之BET分析 ………………...60 4.3.3 金屬奈米粒子/二氧化矽複合材料之觸媒應用 ………………….63 第五章 結論 ……………………………………………………………………………..70 第六章 參考文獻 ……………………………………………………………………….71

    1. Beltrán-Osuna, Á. A.; Perilla, J. E., Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology 2016, 77 (2), 480-496.
    2. Gawande, M. B.; Monga, Y.; Zboril, R.; Sharma, R., Silica-decorated magnetic nanocomposites for catalytic applications. Coordination Chemistry Reviews 2015, 288, 118-143.
    3. Liu, T.; Lei, H., Nd3+-doped colloidal SiO2 composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers. Applied Surface Science 2017, 413, 16-26.
    4. Yamamoto, E.; Kuroda, K., Colloidal mesoporous silica nanoparticles. Bulletin of the Chemical Society of Japan 2016, 89 (5), 501-539.
    5. Selvakannan, P.; Swami, A.; Srisathiyanarayanan, D.; Shirude, P. S.; Pasricha, R.; Mandale, A. B.; Sastry, M., Synthesis of aqueous Au core− Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air− water interface. Langmuir 2004, 20 (18), 7825-7836.
    6. Kwak, J.; Lee, S.-Y., Use of Tyrosyl Bolaamphiphile Self-Assembly as a Biochemically Reactive Support for the Creation of Palladium Catalysts. ACS applied materials & interfaces 2014, 6 (9), 6461-6468.
    7. Jazayeri, M. H.; Amani, H.; Pourfatollah, A. A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B., Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sensing and bio-sensing research 2016, 9, 17-22.
    8. Zhao, P.; Feng, X.; Huang, D.; Yang, G.; Astruc, D., Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coordination Chemistry Reviews 2015, 287, 114-136.
    9. Noller, H. F., The parable of the caveman and the Ferrari: Protein synthesis and the RNA world. Philosophical Transactions of the Royal Society B: Biological Sciences 2017, 372 (1716), 20160187.
    10. Schulz, G. E.; Schirmer, R. H., Principles of protein structure. Springer Science & Business Media: 2013.
    11. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-2637.
    12. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
    13. Brändén, C.-I.; Tooze, J., Introduction to protein structure. Taylor & Francis: 1999.
    14. Yazawa, K.; Numata, K., Recent advances in chemoenzymatic peptide syntheses. Molecules 2014, 19 (9), 13755-13774.
    15. Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J., Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 2000, 403 (6767), 289.
    16. Yuan, J.-J.; Mykhaylyk, O. O.; Ryan, A. J.; Armes, S. P., Cross-linking of cationic block copolymer micelles by silica deposition. Journal of the American Chemical Society 2007, 129 (6), 1717-1723.
    17. Tomczak, M. M.; Glawe, D. D.; Drummy, L. F.; Lawrence, C. G.; Stone, M. O.; Perry, C. C.; Pochan, D. J.; Deming, T. J.; Naik, R. R., Polypeptide-templated synthesis of hexagonal silica platelets. Journal of the American Chemical Society 2005, 127 (36), 12577-12582.
    18. Meegan, J. E.; Aggeli, A.; Boden, N.; Brydson, R.; Brown, A. P.; Carrick, L.; Brough, A. R.; Hussain, A.; Ansell, R. J., Designed Self‐Assembled β‐Sheet Peptide Fibrils as Templates for Silica Nanotubes. Advanced Functional Materials 2004, 14 (1), 31-37.
    19. Kessel, S.; Thomas, A.; Börner, H. G., Mimicking biosilicification: programmed coassembly of peptide–polymer nanotapes and silica. Angewandte Chemie International Edition 2007, 46 (47), 9023-9026.
    20. Tardy, Y., The chemistry of silica solubility, polymerization, colloid and surface properties, and biochemistry, Ralf K. Iler, 1979. Sciences Géologiques, bulletins et mémoires 1982, 35 (1), 93-93.
    21. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
    22. Tang, L.; Cheng, J., Nonporous silica nanoparticles for nanomedicine application. Nano today 2013, 8 (3), 290-312.
    23. Hu, T.-M.; Chou, H.-C.; Lin, C.-Y., Facile green synthesis of organosilica nanoparticles by a generic “salt route”. Journal of colloid and interface science 2019, 539, 634-645.
    24. Liu, X.; Lu, X.; Wen, P.; Shu, X.; Chi, F., Synthesis of ultrasmall silica nanoparticles for application as deep-ultraviolet antireflection coatings. Applied Surface Science 2017, 420, 180-185.
    25. Hyde, E. D.; Seyfaee, A.; Neville, F.; Moreno-Atanasio, R., Colloidal silica particle synthesis and future industrial manufacturing pathways: a review. Industrial & Engineering Chemistry Research 2016, 55 (33), 8891-8913.
    26. Finnie, K. S.; Bartlett, J. R.; Barbé, C. J.; Kong, L., Formation of silica nanoparticles in microemulsions. Langmuir 2007, 23 (6), 3017-3024.
    27. Yue, R.; Meng, D.; Ni, Y.; Jia, Y.; Liu, G.; Yang, J.; Liu, H.; Wu, X.; Chen, Y., One-step flame synthesis of hydrophobic silica nanoparticles. Powder technology 2013, 235, 909-913.
    28. Fernandes, F.; Coradin, T.; Aimé, C., Self-assembly in biosilicification and biotemplated silica materials. Nanomaterials 2014, 4 (3), 792-812.
    29. Sun, B.; Zhou, G.; Zhang, H., Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review. Progress in Solid State Chemistry 2016, 44 (1), 1-19.
    30. Gustafsson, H.; Isaksson, S.; Altskär, A.; Holmberg, K., Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions. Journal of colloid and interface science 2016, 467, 253-260.
    31. Yamamoto, E.; Mori, S.; Shimojima, A.; Wada, H.; Kuroda, K., Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method. Nanoscale 2017, 9 (7), 2464-2470.
    32. Sanchez, C.; Ribot, F.; Lebeau, B., Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. Journal of Materials Chemistry 1999, 9 (1), 35-44.
    33. Bernards, T.; Van Bommel, M.; Boonstra, A., Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. Journal of non-crystalline solids 1991, 134 (1-2), 1-13.
    34. Kim, K. D.; Kim, H. T., New process for the preparation of monodispersed, spherical silica particles. Journal of the American Ceramic Society 2002, 85 (5), 1107-1113.
    35. Baffou, G.; Quidant, R., Nanoplasmonics for chemistry. Chemical Society Reviews 2014, 43 (11), 3898-3907.
    36. Zaera, F., Nanostructured materials for applications in heterogeneous catalysis. Chemical Society Reviews 2013, 42 (7), 2746-2762.
    37. Kamyshny, A.; Magdassi, S., Conductive nanomaterials for printed electronics. Small 2014, 10 (17), 3515-3535.
    38. Pang, B.; Yang, X.; Xia, Y., Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine 2016, 11 (13), 1715-1728.
    39. Kale, M. J.; Avanesian, T.; Christopher, P., Direct photocatalysis by plasmonic nanostructures. Acs Catalysis 2013, 4 (1), 116-128.
    40. Zhang, Z.-c.; Xu, B.; Wang, X., Engineering nanointerfaces for nanocatalysis. Chemical Society Reviews 2014, 43 (22), 7870-7886.
    41. Dai, Y.; Wang, Y.; Liu, B.; Yang, Y., Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 2015, 11 (3), 268-289.
    42. Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55-75.
    43. da Silva, A. G.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H., Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications 2017, 53 (53), 7135-7148.
    44. Linares, N.; Silvestre-Albero, A. M.; Serrano, E.; Silvestre-Albero, J.; García-Martínez, J., Mesoporous materials for clean energy technologies. Chemical Society Reviews 2014, 43 (22), 7681-7717.
    45. Linares, N.; Sepúlveda, A. E.; Berenguer, J. R.; Lalinde, E.; Garcia-Martinez, J., Mesoporous organosilicas with Pd (II) complexes in their framework. Microporous and Mesoporous Materials 2012, 158, 300-308.
    46. Linares, N.; Serrano, E.; Carrillo, A. I.; Garcia-Martinez, J., Metal-complex ionosilicas: Cationic mesoporus silica with Ni (II) and Cu (II) complexes in their framework. Materials Letters 2013, 95, 93-96.
    47. Ma, G.; Yan, X.; Li, Y.; Xiao, L.; Huang, Z.; Lu, Y.; Fan, J., Ordered nanoporous silica with periodic 30− 60 nm pores as an effective support for gold nanoparticle catalysts with enhanced lifetime. Journal of the American Chemical Society 2010, 132 (28), 9596-9597.
    48. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J., Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews 2009, 38 (2), 481-494.
    49. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
    50. Tsuchiya, K.; Numata, K., Chemoenzymatic synthesis of polypeptides for use as functional and structural materials. Macromolecular bioscience 2017, 17 (11), 1700177.
    51. Numata, K.; Baker, P. J., Synthesis of adhesive peptides similar to those found in blue mussel (Mytilus edulis) using papain and tyrosinase. Biomacromolecules 2014, 15 (8), 3206-3212.
    52. Viswanathan, K.; Omorebokhae, R.; Li, G.; Gross, R. A., Protease-catalyzed oligomerization of hydrophobic amino acid ethyl esters in homogeneous reaction media using l-phenylalanine as a model system. Biomacromolecules 2010, 11 (8), 2152-2160.
    53. Valliant, E. M.; Jones, J. R., Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter 2011, 7 (11), 5083-5095.
    54. Ji, P.; Feng, W., Solubility of amino acids in water and aqueous solutions by the statistical associating fluid theory. Industrial & Engineering Chemistry Research 2008, 47 (16), 6275-6279.
    55. Kosmulski, M., Positive electrokinetic charge of silica in the presence of chlorides. Journal of colloid and interface science 1998, 208 (2), 543-545.
    56. Zhou, C.; Li, J.; Tan, S., Effect of L-lysine on the physicochemical properties of pork sausage. Food Science and Biotechnology 2014, 23 (3), 775-780.
    57. Huang, Y.-C.; Yang, Y.-S.; Lai, T.-Y.; Jan, J.-S., Lysine-block-tyrosine block copolypeptides: Self-assembly, cross-linking, and conjugation of targeted ligand for drug encapsulation. Polymer 2012, 53 (4), 913-922.
    58. Jan, J.-S.; Chuang, T.-H.; Chen, P.-J.; Teng, H., Layer-by-layer polypeptide macromolecular assemblies-mediated synthesis of mesoporous silica and gold nanoparticle/mesoporous silica tubular nanostructures. Langmuir 2011, 27 (6), 2834-2843.
    59. Jan, J.-S.; Chen, P.-J.; Ho, Y.-H., Bioassisted synthesis of catalytic gold/silica nanotubes using layer-by-layer assembled polypeptide templates. Journal of colloid and interface science 2011, 358 (2), 409-415.
    60. Anand, B. G.; Dubey, K.; Shekhawat, D. S.; Kar, K., Intrinsic property of phenylalanine to trigger protein aggregation and hemolysis has a direct relevance to phenylketonuria. Scientific reports 2017, 7 (1), 11146.
    61. Wang, S. S.-S.; How, S.-C.; Chen, Y.-D.; Tsai, Y.-H.; Jan, J.-S., Bioactive saccharide-conjugated polypeptide micelles for acid-triggered doxorubicin delivery. Journal of Materials Chemistry B 2015, 3 (26), 5220-5231.
    62. Do, T. D.; Kincannon, W. M.; Bowers, M. T., Phenylalanine oligomers and fibrils: the mechanism of assembly and the importance of tetramers and counterions. Journal of the American Chemical Society 2015, 137 (32), 10080-10083.
    63. ALOthman, Z., A review: fundamental aspects of silicate mesoporous materials. Materials 2012, 5 (12), 2874-2902.
    64. Yu, Z.; Cai, Z.; Chen, Q.; Liu, M.; Ye, L.; Ren, J.; Liao, W.; Liu, S., Engineering β-sheet peptide assemblies for biomedical applications. Biomaterials science 2016, 4 (3), 365-374.
    65. Chen, K.-J.; Chen, H.-L.; Tang, C.-C.; Wu, H.-H.; Jan, J.-S., Synthesis of silica/polypeptide hybrid nanomaterials and mesoporous silica by molecular replication of sheet-like polypeptide complexes through biomimetic mineralization. Journal of colloid and interface science 2019, 542, 243-252.
    66. Jan, J.-S.; Chen, P.-S.; Hsieh, P.-L.; Chen, B.-Y., Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides. ACS applied materials & interfaces 2012, 4 (12), 6865-6874.
    67. Wang, W.; Anderson, C. F.; Wang, Z.; Wu, W.; Cui, H.; Liu, C.-J., Peptide-templated noble metal catalysts: syntheses and applications. Chemical science 2017, 8 (5), 3310-3324.

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE