簡易檢索 / 詳目顯示

研究生: 林昱維
Lin, Yu-Wei
論文名稱: 利用SINDy法建立電離層TEC模型
Constructing an ionospheric TEC model using the SINDy method
指導教授: 陳佳宏
Chen, Chia-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 139
中文關鍵詞: 非線性動態稀疏識別法全電子含量電離層模型
外文關鍵詞: Sparse Identification of Nonlinear Dynamics, total electron content, ionospheric model
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在預測電離層的動態變化,根據電離層物理理論,科學家利用已知參數建立電離層模式以模擬電離層電漿濃度的變化。然而使用數值模式來進行電離層預測會因為物理理論模式與經驗模式的限制,往往無法精準的預測電離層,而資料同化模式則因為系集運算的關係,需要使用到大量的運算資源,會有運算時間過長以及對於硬體需求較高的問題,所以運行環境並不是那麼容易建置。伴隨著近年利用AI人工智慧預測電離層電漿濃度的技術逐漸成熟,科學家開始嘗試使用AI進行電離層預測。人工智慧可以在不需要耗費龐大的運算資源下,就能達到相當不錯的預測精準度,但其卻不能以物理原理或理論依據去理解,使得對於預測結果難以從電離層物理角度加以解釋和驗證。本研究利用非線性動態稀疏識別法(The sparse identification of nonlinear dynamics method,簡稱為 SINDy 法)與具控制之非線性動態稀疏識別法(Sparse Identification of Nonlinear Dynamics With Control,簡稱SINDYc法),透過分析電離層全電子含量(Total electron content, TEC)參數以及電離層中不同的參數變化(例如電漿速度、離子溫度、太陽天頂角等),其不僅可以保留人工智慧的優勢,也可以透過電離層物理來解釋,並輸出電離層動態系統的非線性運動方程式。本研究進一步與現有的電離層物理公式(電漿連續方程式與動量方程式)進行比較,評估和修正SINDy法與SINDYc法所反推的公式中各個函數的種類、各個參數的權重,並判斷探討其與現有的公式的差異。結果發現,在不同預測條件下,如SINDy與SINDYc的使用、地點上不同方位的資料、閾值、太陽活動性與季節的不同,皆會使預測準確度不同。經由多種不同方位資料與閾值組合測試下,本研究建構出最佳的電離層預測方程式組,其中TEC預測均方根偏差(Root-mean-square error, RMSE)在背景電漿濃度較小時期為0.58-1.9 TECU,而在背景電漿濃度較大時期則為2.09-3.87 TECU。

    This study uses the Sparse Identification of Nonlinear Dynamics (SINDy) and the Sparse Identification of Nonlinear Dynamics with Control (SINDYc) to develop a set of ionospheric forecasting equations. By analyzing the Total Electron Content (TEC) and various ionospheric parameters (such as plasma velocity, ion temperature, solar zenith angle, etc.), this approach not only retains the advantages of AI but also can be explained by ionospheric physics. It can output the nonlinear dynamics equations of the ionospheric system. This study further compares the results with existing ionospheric physical formulas (plasma continuity equation and momentum equation). It evaluates and corrects the types of functions and the weights of parameters in the equations inferred by the SINDy and SINDYc methods, determining whether they are reasonable equations and exploring the differences from existing formulas.
    The results indicate that Root-Mean-Square Error (RMSE) values of prediction would be affected by solar activity and the ionospheric plasma densities. For instance, the TEC prediction results show RMSE values ranging from 0.58 to 1.9 during lower ionospheric plasma density periods and from 2.09 to 3.87 during higher ionospheric plasma density periods.

    摘要 I 英文延伸摘要 II 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機 5 第二章 電離層與電離層模式 6 2.1. 電離層簡介 6 2.1.1. 電離層生成、消散與作用力 6 2.1.2. 電離層分層 10 2.1.3. 電離層週期性變化 13 2.1.4. 太陽活動性 15 2.1.5. 全電子含量(Total Electron Content) 16 2.2. 方程式 17 2.3. 電離層模式 18 2.3.1. 物理理論模式 18 2.3.2. 經驗模式 18 2.3.3. 資料同化模式 19 第三章 研究方法 20 3.1. 使用資料 20 3.1.1. TIEGCM模式 20 3.1.2. 資料選取 21 3.1.3. 不同情況 22 3.2. 研究方法 23 3.2.1. SINDy法 23 3.2.2. SINDYc法 25 3.3. 超參數 25 3.3.1. 函數庫 25 3.3.2. 優化器 26 3.4. 評估指標 27 3.5. K-fold交叉驗證 28 第四章 研究結果與討論 29 4.1. Lorenz-63測試 29 4.2. TIEGCM模式 31 4.3. SINDy法成果 33 4.4. SINDYc法成果 36 4.5. 閾值調整 39 4.5.1. SINDy模型結果 40 4.5.2. SINDYc模型結果 44 4.5.3. 小結 50 4.6. 太陽活動性與季節效應 50 4.7. K-fold測試 55 4.7.1. 天數統計 55 4.7.2. 係數平均統計 58 4.7.3. 太陽活動性與季節效應 59 第五章 總結與未來展望 63 參考文獻 68 附錄 72

    Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., & Pignalberi, A. (2022). The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Reviews of Geophysics, 60(4). https://doi.org/ARTN e2022RG000792
    Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 3932-3937. https://doi.org/10.1073/pnas.1517384113
    Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Sparse Identification of Nonlinear Dynamics with Control (SINDYc)**SLB acknowledges support from the U.S. Air Force Center of Excellence on Nature Inspired Flight Technologies and Ideas (FA9550-14-1-0398). JLP thanks Bill and Melinda Gates for their active support of the Institute of Disease Modeling and their sponsorship through the Global Good Fund. JNK acknowledges support from the U.S. Air Force Office of Scientific Research (FA9550-09-0174). IFAC-PapersOnLine, 49(18), 710–715. https://doi.org/10.1016/j.ifacol.2016.10.249
    Chen, C. H., Lin, C. H., Matsuo, T., Chen, W. H., Lee, I. T., Liu, J. Y., Lin, J. T., & Hsu, C. T. (2016). Ionospheric data assimilation with thermosphere‐ionosphere‐electrodynamics general circulation model and GPS‐TEC during geomagnetic storm conditions. Journal of Geophysical Research. Space Physics, 121(6), 5708–5722. https://doi.org/10.1002/2015ja021787
    Chen, C. H., Saito, A., Lin, C. H., Liu, J. Y., Tsai, H. F., Tsugawa, T., Otsuka, Y., Nishioka, M., & Matsumura, M. (2011). Long-distance propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets and Space, 63(7), 881-884. https://doi.org/10.5047/eps.2011.06.026
    Chen, C. H., Zhang, X. M., Sun, Y. Y., Wang, F., Liu, T. C., Lin, C. Y., Gao, Y. X., Lyu, J., Jin, X. B., Zhao, X. L., Cheng, X., Zhang, P. Y., Chen, Q. Y., Zhang, D. X., Mao, Z. Q., & Liu, J. Y. (2022). Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Tonga-Hunga Ha'apai Underwater Volcano Eruption on 15 January 2022. Remote Sensing, 14(9). https://doi.org/ARTN 2179
    Chou, M. Y., Shen, M. H., Lin, C. C. H., Yue, J., Chen, C. H., Liu, J. Y., & Lin, J. T. (2018). Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather-the International Journal of Research and Applications, 16(2), 172-184. https://doi.org/10.1002/2017sw001738
    Hajj, G. A., Wilson, B. D., Wang, C., Pi, X., & Rosen, I. G. (2004). Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Science, 39(1). https://doi.org/Artn Rs1s05
    Hedin, A. E., Biondi, M. A., Burnside, R. G., Hernandez, G., Johnson, R. M., Killeen, T. L., Mazaudier, C., Meriwether, J. W., Salah, J. E., Sica, R. J., Smith, R. W., Spencer, N. W., Wickwar, V. B., & Virdi, T. S. (1991). Revised Global-Model of Thermosphere Winds Using Satellite and Ground-Based Observations. Journal of Geophysical Research-Space Physics, 96(A5), 7657-7688. https://doi.org/Doi 10.1029/91ja00251
    Hedin, A. E., Spencer, N. W., & Killeen, T. L. (1988). Empirical Global-Model of Upper Thermosphere Winds Based on Atmosphere and Dynamics Explorer Satellite Data. Journal of Geophysical Research-Space Physics, 93(A9), 9959-9978. https://doi.org/DOI 10.1029/JA093iA09p09959
    Huang, C., Ma, C., Chen, R., Cheng, C., & Li, X. (2023). Sparse Identification of Nonlinear Dynamics via an Sequential Thresholded-Iteratively Reweighted Least Squares. 2023 5th International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 2023, Pp. 1-6. https://doi.org/10.1109/iai59504.2023.10327589
    Huba, J. D., Joyce, G., & Fedder, J. A. (2000). Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model. Journal of Geophysical Research-Space Physics, 105(A10), 23035-23053. https://doi.org/Doi 10.1029/2000ja000035
    Jeong, S. H., Lee, W. K., Kil, H., Jang, S., Kim, J. H., & Kwak, Y. S. (2024). Deep Learning-Based Regional Ionospheric Total Electron Content Prediction-Long Short-Term Memory (LSTM) and Convolutional LSTM Approach. Space Weather-the International Journal of Research and Applications, 22(1). https://doi.org/ARTN e2023SW003763
    Kakinami, Y., Yamamoto, M., Chen, C. H., Watanabe, S., Lin, C., Liu, J. Y., & Habu, H. (2013). Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. Journal of Geophysical Research-Space Physics, 118(8), 5184-5189. https://doi.org/10.1002/jgra.50508
    Lee, I. T., Matsuo, T., Richmond, A. D., Liu, J. Y., Wang, W., Lin, C. H., Anderson, J. L., & Chen, M. Q. (2012). Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering. Journal of Geophysical Research-Space Physics, 117. https://doi.org/Artn A10318
    Lin, C. C. H., Shen, M. H., Chou, M. Y., Chen, C. H., Yue, J., Chen, P. C., & Matsumura, M. (2017). Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophysical Research Letters, 44(15), 7578-7586. https://doi.org/10.1002/2017gl074192
    Liu, J. Y., Chen, C. H., Lin, C. H., Tsai, H. F., Chen, C. H., & Kamogawa, M. (2011). Ionospheric disturbances triggered by the 11 March 2011 9.0 Tohoku earthquake. Journal of Geophysical Research-Space Physics, 116. https://doi.org/Artn A06319
    Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research-Space Physics, 107(A12). https://doi.org/Artn 1468
    Richmond, A. D., Ridley, E. C., & Roble, R. G. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19(6), 601–604. https://doi.org/10.1029/92gl00401
    Ridley, A., Deng, Y., & Tóth, G. (2006). The global ionosphere–thermosphere model. Journal of Atmospheric and Solar-terrestrial Physics, 68(8), 839–864. https://doi.org/10.1016/j.jastp.2006.01.008
    Schunk, R. W., Scherliess, L., Sojka, J. J., Thompson, D. C., Anderson, D. N., Codrescu, M., Minter, C., Fuller-Rowell, T. J., Heelis, R. A., Hairston, M., & Howe, B. M. (2004). Global Assimilation of Ionospheric Measurements (GAIM). Radio Science, 39(1). https://doi.org/Artn Rs1s02
    Tuna, H., Arikan, O., & Arikan, F. (2015). Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT. Radio Science, 50(10), 1062-1075. https://doi.org/10.1002/2015rs005744
    Vlahos, C. (1969). Fell’s guide to operating shortwave radio.
    Yang, D., & Fang, H. X. (2023). Forecasting of global ionospheric TEC using a deep learning approach. Gps Solutions, 27(2). https://doi.org/ARTN 74

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE