| 研究生: |
蔡明芳 Tsai, Ming-Fang |
|---|---|
| 論文名稱: |
無氟疏水/親油紡織品用於分離水在油中乳液之研究 Fluorine-free hydrophobic/oleophilic fabrics for the separation of water-in-oil (W/O) emulsions |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 無氟材料 、疏水/親油紡織品 、油-在分離膜 、水在油中乳化液 |
| 外文關鍵詞: | Fluorine-free materials, hydrophobic/oleophilic fabrics, oil-water separation membrane, water-in-oil emulsion |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以方便取得、價廉、工業發展成熟的聚脂纖維紡織品做為基材,使用環保的材料進行表面修飾,製備出疏水/親油的分離膜,用以分離無界面活性劑 (surfactant-free) 與含有界面活性劑 (surfactant-stabilized) 的水在油中 (W/O) 乳化液。材料選用無氟的正辛基三乙氧基矽烷 (n-octyltriethoxysilane) 來製備疏水修飾二氧化矽奈米粒子 (hydrophobically modified SiO2, HM-SiO2),與同樣無氟的聚二甲基矽氧烷 (PDMS) 交聯高分子混合,並利用浸塗法來修飾紡織品。
實驗結果顯示,以PDMS/HM-SiO2浸塗製成的疏水/親油紡織品,透過增加HM-SiO2的濃度以及重複塗佈的次數可以增加分離乳化液的成功率。其從表面形態以及分離結果可以證實主要影響分離成功的因素是分離膜的孔洞大小,並不是疏水的濕潤型態 (wetting mode) 之影響。而不論對於分離有、無界面活性劑 (Span 80) 的水在甲苯中乳化液,分離效率皆達99%。分離通量則隨著HM-SiO2濃度和重複塗佈次數的增加而降低。此外,增加乳化劑的濃度也會使分離通量降低。
In this work, a eco-friendly hydrophobic/oleophilic fabrics are prepared for separating the surfactant-free and surfactant-stabilized water-in-oil (W/O) emulsion. The substrates are using polyester fabrics because they are low-cost, easily accessible and their mature development of industry. In addition, the fluorine-free materials are used. The n-octyltriethoxysilane is used to hydrophobically modify SiO2 (HM-SiO2) and then blend with polydimethylsiloxane (PDMS) to form the dipping solution. Then using dip-coating to fabricate hydrophobic/oleophilic fabrics.
In the results, increasing the concentration of HM-SiO2 and coating times can increase the success opportunity of separating W/O emulsions. The surface morphology and separation results reveal that pore size is the main factor to separate W/O emulsion, and different wetting modes do not influence the results. Furthermore, the separation efficiency of both surfactant-free and surfactant-stabilized W/O emulsions separations are up to 99%. The flux will decrease when increasing concentration of HM-SiO2 and coating times. Moreover, the flux will decrease when increasing the concentration of surfactant.
1. Y. X. Wu, and J. Y. Xu, Oil and water separation technology. Advances in Mechanics, 45, 2015.
2. G. L. Li, L. J. Guo, Flow patterns of oil-water liquid-liquid two-phase flow in helically coiled tubes. CIESC Journal, 51(2), 239-242, 2005.
3. Y. Zhou, Y. X. Wu, Z. C. Zheng, Q. S. Liu, and Q. P. Li, Research on oil-water separation technique1 numerical simulation in both straight and helical pipes. Journal of Hydrodynamics, 19(4), 540-546, 2004.
4. C. Y. Li, X. Liu, Numerical simulation on oil-water separation in spiral pipe after different flow velocity. Journal of Liaoning Shihua University, 32(1), 32-35, 2012.
5.D. T. Gong, Y. X. Wu, Z. C. Zheng, J. Guo, J. Zhang, and C. Tang, Numerical simulation of the oil-water two-phase flow in a helical tube with variable mass flow rates. Journal of Hydrodynamics, 21(5), 2006.
6. W. S. Barnickel, Process for treating crude oil, United states patent office, 683619, 1914.
7. N. Xia, Experimental research of coarse graining technology in improving the efficiency of oil-water separation. Master Thesis, Northeast Petroleum University, 2012.
8. N. Nadarajah, A. Singh, and O. P. Ward, Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World Journal of Microbiology and Biotechnology, 18(5), 435-440, 2002.
9. Z. X. Sun, Research and application for oil/water separation based on biodearadable materials PLA. Master Thesis, Northeast Normal University, 2013.
10. G. Kwon, E. Post, and A. Tuteja, Membranes with selective wettability for the separation of oil–water mixtures. MRS communications, 5(3), 475-494, 2015.
11. R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions. J. Mater. Chem. A, 5(31), 16025-16058, 2017.
12. J. Wu, J. Chen, K. Qasim, J. Xia, W. Lei, and B. Wang, A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol.,2012, 87, 427-430.
13. Y. Cao, X. Zhang, L. Tao, K. Li, Z. Xue, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces, 5(10), 4438–4442, 2013.
14. C. H. Xue, Y. R. Li, J. L. Hou, L. Zhang, J. Z. Ma, and S. T. Jia, Self-roughened superhydrophobic coatings for continuous oil–water separation, Journal of Materials Chemistry A, 3(19), 10248-10253, 2015.
15. C. J. Chen, W. H. Li, W. Y. Chen, and Y. M. Yang, Fabrication of multifunctional polyester fabrics by using fluorinated polymer coatings, Fibers and Polymers, 20(10), 2120-2126, 2019.
16. J. Zhnag and S. Seeger, Polyester Materials with Superwetting silicone nanofilaments for oil/water separation and selective oil absorption, Advanced Functional Materials, 21(24), 4632-4632, 2011.
17. J. Li, L. shi, Y. Chen, Y. Zhang, Z. Guo, B. Su, and W. Liu, Stable superhydrophobic coatings from thiol-ligandnanocrystals and their application in oil/water separation, Journal of Materials Chemistry, 22(19), 9774-9781, 2012.
18. E. Richard, R. V. Lakshmi, S. T. Aruna, and B. Basu, A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics, Applied Surface Science, 277, 302-309, 2013.
19. B. Wang, J. Li, G. Wang, W. Liang, Y. Zhang, L, Shi, Z. Guo, and W. Liu, Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation, ACS Applied Materials & Interfaces, 5(5), 1827-1839, 2013.
20. C. H. Xue, P. T. Ji, P. Zhang, Y. R. Li, and S. T. Jia, Fabrication of superhydrophobic and superoleophilic textiles for oil–water separation, Applied Surface Science, 284, 464-471, 2013.
21. X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, and B. Ge, Robust and durable superhydrophobic cotton fabrics for oil/water separation, ACS Applied Materials & Interfaces, 5(15), 7208-7214, 2013.
22. F. Su, amd K. Yao, Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method, ACS Applied Materials & Interfaces, 6(11), 8762-8770, 2014.
23. X. Liu, L. Ge, W. Li, X. Wang, and F. Li, Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption, ACS Applied Materials & Interfaces, 7(1), 791-800, 2015.
24. J. Wang and Y. Chen, Oil-water separation capability of superhydrophobic fabrics fabricated via combining polydopamine adhesion with lotus‐leaf‐like structure, Journal of Applied Polymer Science, 132(39), 42614, 2015.
25. A. Singh and J. Singh, Fabrication of zirconia based durable superhydrophobic–superoleophilic fabrics using non fluorinated materials for oil-water separation and water purification, RSC advances, 6(105), 103632-103640, 2016.
26. S. W. Han, K. D. Kim, H. O. Seo, I. H. Kim, C. S. Jeon, J. E. An, J. H, Kim, S. Uhm, and U. D. Kim, Oil-water separation using superhydrophobic PET membranes fabricated via simple dip‐coating of PDMS–SiO2 nanoparticles, Macromolecular Materials and Engineering, 302(11), 1700218, 2017.
27. Q. Y. Cheng, C. S. Guan, M. Wang, Y. D. Li, and J. B. Zeng, Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation, Carbohydrate Polymers, 199, 390-396, 2018.
28. X. Su, H. Li, X. Lai, L. Zhang, J. Wang, X. Liao, and X. Zeng, Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil–water separation, ACS Applied Materials & Interfaces, 9(33), 28089-28099, 2017.
29. M. Liu, S. Wang, Z. Wei, Y. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Advanced Materials, 21(6), 665-669, 2009.
30. Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, and L. Jiang, A novel superhydrophilic and underwater superoleophobic hydrogel‐coated mesh for oil/water separation, Advanced Materials, 23(37), 4270-4273, 2011.
31. C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, and L. Jiang, underwater self‐cleaning PEDOT‐PSS hydrogel mesh for effective separation of corrosive and hot oil/water mixtures, Advanced Materials Interfaces, 1(6), 1400099, 2014.
32. B. Jing, H. Wang, K. Y. Lin, P. J. Mcginn, C. Na, and Y. Zhu, A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation, Polymer, 54(21), 5771-5778, 2013.
33. Q. Wen, J. Di, L. Jiang, J. Yu, and R. Xu, Zeolite-coated mesh film for efficient oil–water separation, Chemical Science, 4(2), 591-595, 2013.
34. A. Kota, G. Kwon, W. Choi, J. M. Mabry, and A. Tuteja, Hygro-responsive membranes for effective oil–water separation, Nature Communication, 3, 1025, 2012.
35. J. Yang, Z. Zhang, X. Xu, X. Zhu, X. Men, and X. Zhou, Superhydrophilic–superoleophobic coatings, Journal of Materials Chemistry, 22(7), 2834-2937, 2012.
36. J. Yang, H. Song , X. Yan, H. Tang, and C. Li, Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation, Cellulose, 21, 1851-1857, 2014.
37. X. Zhu, H. E. Loo, and R. Bai, A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications, Journal of Membrane Science, 436, 47-56, 2013.
38. X. Zhu, W. Tu, K. H. Wee, and R. Bai, Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties, Journal of Membrane Science, 466, 36-44, 2014.
39. G. Kwon, A. K. Kota, Y. Li, A. Sohani, J. M. Mabry, and A. Tuteja, On-demand separation of oil-water mixtures, Advanced Materials, 24(27), 3666-3671, 2012.
40. W. Barthlott, and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 20 (1), 1-8, 1997.
41. C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Annals of Botany, 79(6), 667-677, 1997.
42. J. Zimmermann, and S. Seeger, F. A. Reifler, Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces, Textile Research Journal, 79 (17), 1565-1570, 2009.
43. Z. Chu, and S. Seeger, Superamphiphobic surfaces, Chemical Society Reviews, 43 (8), 2784-2798, 2014.
44. S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications, Journal of Materials Chemistry A, 5(1), 31-55, 2017.
45. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28(8), 988-994, 1936.
46. A. Cassie, and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40, 546-551, 1944.
47. X. J. Feng, and L. Jiang, Design and creation of superwetting/antiwetting surfaces, Advanced Materials, 18(23), 3063-3078, 2006.
48. E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko, Robust technique allowing manufacturing superoleophobic surfaces, Applied Surface Science, 270, 98-103, 2013.
49. X. Liu, Y. Liang, F. Zhou, and W. Liu, Extreme wettability and tunable adhesion: biomimicking beyond nature?, Soft Matter, 8(7), 2070-2086, 2012.
50. J. Bico, U. Thiele, and D. Que´re´, Wetting of textured surfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1), 41-46, 2002.
51. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, Designing superoleophobic surfaces, Science, 318(5856), 1618-1622, 2007.
52. H. Sun, Y. Xu, Y. Zhou, W. Gao, H. Zhao, amd W. Wang, Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly(vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles, Journal of Applied Polymer Science, 134(13), 44501, 2016.
53. W. Zhang, N. Liu, Y. Gao, X. Lin, Y. Liu, and L. Feng, Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation, Advanced Materials Interfaces, 4(10), 1600029, 2017.
54. C. Chen, D. Weng, A. Mahmood, S. Chen, and J. Wang, Separation mechanism and construction of surfaces with special wettability for oil/water separation, ACS Applied Materials & Interfaces, 11(11), 11006-11027, 2019.
55. J. Zuo. J. Chen, X. Wen, S. Xu, and P. Pi, Advanced materials for separation of oil / water emulsion, Progress in Chemistry, 31(10), 1440-1458, 2019.
56. Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films, Advanced Materials, 25(17), 2422-2427, 2013.
57. Y. Cao, Y. Chen, N. Liu, X. Lin, L. Feng, and Y. Wei, Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation, Journal of Materials Chemistry A, 2(48), 20439-20443, 2014.
58. Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu, G. Sun, and B. Ding, Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions, ACS Nano, 9(4), 3791-3799, 2015.
59. S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guna, and J. Zhang, Durable superhydrophobic cotton fabric for oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533, 249-254, 2017.
60. C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai, Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaningand efficient oil-water separation, Journal of Materials Chemistry A, 4(31), 12179-12187, 2016.
61. J. Ge, D. Zong, Q. Jin, J. Yu, and B. Ding, Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions, Advanced Functional Materials, 28(10), 1705051, 2018.
62. N. H. Ismail, W. N. W. Sallleh, A. F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, and J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: A review, Separation and Purification Technology, 233, 116007, 2020.
63. X. Bai, Z. Zhao, H. Yang, and J. Li, ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures, Separation and Purification Technology, 221, 294-302, 2019.
64. Y. Pan, L. Liu, Z. Zhang, S. Huang, Z. Hao, and X. Zhao, Surfaces with controllable super-wettability and applications for smart oilwater separation, Chemical Engineering Journal, 378, 122178, 2019.