簡易檢索 / 詳目顯示

研究生: 龔姵慈
Gong, Pei-Cih
論文名稱: 神經壞死病毒誘發石斑魚程序性壞死的分子免疫病理機制研究
Studies on the molecular immunopathological mechanism with RGNNV-induced necroptosis in grouper fish
指導教授: 洪健睿
Hong, Jiann-Ruey
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 105
中文關鍵詞: 神經壞死病毒石斑魚壞死性凋亡免疫風暴免疫致病機轉細胞死亡
外文關鍵詞: Nervous necrosis virus (NNV), grouper, necroptosis, cytokine storm, immunopathogenesis, cell death
相關次數: 點閱:2下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經壞死病毒(Nervous necrosis virus, NNV)為石斑魚養殖產業中主要的病原之一,常引發大腦組織損傷與高死亡率。然而,NNV 感染所誘發的免疫病理機制仍未被完全釐清。近年研究指出,程序性壞死(necroptosis)為一種免疫相關的細胞死亡路徑,可能參與病毒感染引起的免疫失衡與組織傷害。因此,本研究旨在探討 NNV 感染是否透過活化 necroptosis 路徑,促發石斑魚腦部免疫病理反應,並進一步探討抗氧化劑對相關路徑的調控作用。
    本研究以 GF-1 細胞與石斑魚苗進行 NNV 感染模型,結果顯示在感染後 RIPK1、RIPK3 與 MLKL 基因與蛋白表現量均明顯上升,轉錄體分析亦顯示感染組在 necroptosis 及多項免疫因子(如 IL-1β、IL-10、IL-21)表現上調,顯示 NNV 可能促發細胞死亡與免疫風暴。此外,抗氧化劑處理可降低 RIPK1、RIPK3 表現,並抑制 oxidative stress 相關基因(如 Prdx、NOX、SOD)與部分發炎反應,顯示 ROS 在此病理機制中具調節角色。
    綜合上述結果,本研究首次系統性證實 NNV 感染可透過誘發 necroptosis 路徑活化,促進石斑魚腦部免疫反應失衡與發炎傷害,並指出氧化壓力在此過程中可能具有調控角色。此結果有助於釐清 NNV 感染之致病機轉,並為未來魚類病毒疾病的免疫調控與治療策略提供重要參考依據。

    Nervous necrosis virus (NNV) is a highly neurotropic pathogen responsible for severe brain lesions and high mortality in groupers. While its pathological effects are well-documented, the underlying mechanisms of virus-induced immune and inflammatory responses remain unclear. This study investigates whether NNV infection activates necroptosis—a form of programmed necrotic cell death—and how this process contributes to immune dysregulation and inflammatory pathology.
    Through qPCR and Western blot analyses in GF-1 cells and infected grouper brain tissues, we observed significant upregulation of key necroptosis regulators: RIPK1, RIPK3, and MLKL. Transcriptomic profiling further revealed the concurrent induction of necroptosis-related genes and inflammatory cytokines, including IL-1β, IL-10, and IL-21, suggesting a link between virus-induced cell death and cytokine imbalance. These findings support the hypothesis that NNV-induced necroptosis may act as a driver of immune overactivation and contribute to cytokine storm-like conditions in the infected host.
    Additionally, we evaluated the potential modulatory effect of antioxidant treatment, which partially suppressed necroptosis-related gene expression and inflammatory markers, implying a possible regulatory role of oxidative stress in this process.
    Together, these results provide the first evidence that NNV can induce necroptosis-driven immunopathology in grouper brain tissue, offering novel insights into the cellular mechanisms underlying fish viral encephalopathy and potential directions for immunoregulatory intervention.

    中文摘要Ⅰ 英文摘要 Ⅱ 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 縮寫表 XIV 一、研究背景 1 1-1臺灣石斑魚概況 1 1-2神經壞死病毒(Nervous necrosis virus, NNV) 2 1-2-1 神經壞死病毒簡介 2 1-3魚類腦部免疫反應與NNV感染關係 3 1-4細胞死亡機制與種類 4 1-5壞死性細胞凋亡與免疫風暴的潛在關聯性 6 1-6壞死性細胞凋亡與免疫機制關聯性(研究目的) 7 二、材料與方法 9 2-1實驗材料及溶液 9 2-2實驗方法及步驟 15 三、結果 22 3-1 NNV感染模型建立與病毒效力驗證 22 3-2 NNV 感染誘導 GF-1 細胞壞死性凋亡相關基因顯著上調 23 3-3 NNV 感染誘導石斑魚腦部壞死性凋亡路徑活化,抗氧化劑處理具抑制效果 24 3-4 轉錄體分析顯示 NNV 感染顯著改變石斑魚腦部基因表現,抗氧化劑具緩解效果 25 3-5 NNV 感染活化多條與細胞死亡與免疫反應相關的 KEGG 訊號路徑 26 3-6 NNV 感染顯著活化石斑魚腦部壞死性凋亡路徑相關基因表現 27 3-7 NNV 感染顯著誘導石斑魚腦部活化發炎反應路徑與Th17細胞相關免疫路徑 28 3-8 NNV 感染顯著誘導石斑魚腦部影響多重生物功能路徑,涵蓋免疫活化、細胞死亡與神經訊號調控 29 3-9 NNV 感染石斑魚腦廣泛調控多條免疫與細胞壓力相關路徑基因表現 31 3-10 NNV 感染石斑魚腦誘導多層級免疫因子基因表現上升,抗氧化劑展現緩解潛力 32 四、討論 34 4-1 NNV 感染與石斑魚神經細胞中 necroptosis 活化之探討 34 4-2 抗氧化劑干預對 NNV 誘導之壞死性凋亡與免疫活化的緩解作用探討 36 4-3 NNV 感染促發免疫活化與 Th17 pathway並可能參與免疫風暴形成 38 4-4 抗氧化劑介入可部分緩解 NNV 誘導免疫與細胞死亡路徑之調控潛力 39 4-5 未來展望 40 4-6 結論 41 參考文獻 42 圖表 48

    陳博榕. 神經壞死病毒所誘導之活性氧分子對於自噬作用的調節. In 生物科技研究所 (台南市: 國立成功大學), pp. 96, 2014.

    廖浤鈞. 神經壞死病毒所誘導細胞內氧化壓力能影響細胞自體吞噬作用及病毒複製之研究. In 生物科技研究所碩博士班 (台南市: 國立成功大學), pp. 106, 2012.

    Audic, S., and Claverie, J.M. The significance of digital gene expression profiles. Genome Res 7, 986-995, 1997.

    Bandín, I., and Souto, S. Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 9, 106, 2020.

    Bloemberg, D., and Quadrilatero, J. Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. American Journal of Physiology-Cell Physiology 317, C111-C130, 2019.

    Cai, Z., Jitkaew, S., Zhao, J., Chiang, H.C., Choksi, S., Liu, J., Ward, Y., Wu, L.G., and Liu, Z.G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16, 55-65, 2014.

    Chang, C.-W., Su, Y.-C., Her, G.-M., Ken, C.-F., and Hong, J.-R. Betanodavirus Induces Oxidative Stress-Mediated Cell Death That Prevented by Anti-Oxidants and Zfcatalase in Fish Cells. PLOS ONE 6, e25853, 2011.

    Chen, C., Liang, C.S., Wang, T., Shen, J.L., Ling, F., Jiang, H.F., Li, P.F., and Wang, G.X. Antiviral, antioxidant, and anti-inflammatory activities of rhein against white spot syndrome virus infection in red swamp crayfish (Procambarus clarkii). Microbiol Spectr 11, e0104723, 2023.

    Chen, J., Kos, R., Garssen, J., and Redegeld, F. Molecular Insights into the Mechanism of Necroptosis: The Necrosome as a Potential Therapeutic Target. Cells 8, 1486, 2019.
    Chi, S.C., Wu, Y.C., and Hong, J.R. Chapter 25 - Nodaviruses of Fish. In Aquaculture Virology, F.S.B. Kibenge, and M.G. Godoy, eds. (San Diego: Academic Press), pp. 371-393. 2016.

    Chiang, Y.-H., Wu, Y.-C., and Chi, S.-C. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Developmental & Comparative Immunology 70, 19-26, 2017.

    Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676, 2005.

    Cook, W.D., Moujalled, D.M., Ralph, T.J., Lock, P., Young, S.N., Murphy, J.M., and Vaux, D.L. RIPK1- and RIPK3-induced cell death mode is determined by target availability. Cell Death & Differentiation 21, 1600-1612, 2014.

    D'Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43, 582-592, 2019.

    Daniels, B.P., Snyder, A.G., Olsen, T.M., Orozco, S., Oguin, T.H., 3rd, Tait, S.W.G., Martinez, J., Gale, M., Jr., Loo, Y.M., and Oberst, A. RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell 169, 301-313.e311, 2017.

    dos Santos, N.M., do Vale, A., Reis, M.I., and Silva, M.T. Fish and apoptosis: molecules and pathways. Curr Pharm Des 14, 148-169, 2008.

    Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S., Altucci, L., et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation 25, 486-541, 2018.

    González-Fernández, C., García-Álvarez, M.A., and Cuesta, A. Identification and functional characterization of fish IL-17 receptors suggest important roles in the response to nodavirus infection. Marine Life Science & Technology 6, 252-265, 2024.

    Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29, 644-652, 2011.

    Grayfer, L., Kerimoglu, B., Yaparla, A., Hodgkinson, J.W., Xie, J., and Belosevic, M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 9, 1105, 2018.

    Hao, K., Xu, H., Jiang, S., and Sun, L. Paralichthys olivaceus MLKL-mediated necroptosis is activated by RIPK1/3 and involved in anti-microbial immunity. Frontiers in Immunology Volume 15 - 2024, 2024.

    Iseli, C., Jongeneel, C.V., and Bucher, P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol, 138-148, 1999.

    Iwamoto, T., Mise, K., Takeda, A., Okinaka, Y., Mori, K.I., Arimoto, M., Okuno, T., and Nakai, T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86, 2807-2816, 2005.

    Kaczmarek, A., Vandenabeele, P., and Krysko, D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223, 2013.

    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res 36, D480-484, 2008.

    Karki, R., and Kanneganti, T.D. The 'cytokine storm': molecular mechanisms and therapeutic prospects. Trends Immunol 42, 681-705, 2021.

    Karki, R., and Kanneganti, T.D. Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. J Transl Med 20, 542, 2022.

    Kayesh, M.E.H., Kohara, M., and Tsukiyama-Kohara, K. Effects of oxidative stress on viral infections: an overview. Npj Viruses 3, 27, 2025.
    Krishnan, R., Jeena, K., and Kurcheti, P.P. Nervous necrosis virus induced oxidative imbalance and host associated antioxidant response in Asian seabass brain. Aquaculture 531, 735809, 2021.

    Le Breton, A., Grisez, L., Sweetman, J., and Ollevier, F. Viral nervous necrosis (VNN) associated with mass mortalities in cage-reared sea bass,Dicentrarchus labrax (L.). Journal of Fish Diseases 20, 145-151, 1997.

    Lee, A.-J., Liao, H.-J., and Hong, J.-R. Overexpression of Bcl2 and Bcl2L1 Can Suppress Betanodavirus-Induced Type III Cell Death and Autophagy Induction in GF-1 Cells. In Symmetry, 2022.

    Li, B., Yi, X., Zhuang, T., Zhang, S., Li, S., Yang, Y., Cui, T., Chen, J., Chang, Y., Gao, T., Li, C., and Liu, L. RIP1-Mediated Necroptosis Facilitates Oxidative Stress‒Induced Melanocyte Death, Offering Insight into Vitiligo. Journal of Investigative Dermatology 141, 2921-2931.e2926, 2021.

    Li, C., Liu, J., Zhang, X., Yu, Y., Huang, X., Wei, J., and Qin, Q. Red grouper nervous necrosis virus (RGNNV) induces autophagy to promote viral replication. Fish & Shellfish Immunology 98, 908-916, 2020.

    Li, K., Wei, X., and Yang, J. Cytokine networks that suppress fish cellular immunity. Developmental & Comparative Immunology 147, 104769, 2023.

    Liu, J., Liqun, W., Xinyue, Z., Shaowen, W., and and Qin, Q. Nervous necrosis virus induced vacuolization is a Rab5- and actin-dependent process. Virulence 15, 2301244, 2024.

    Liu, W., Hsu, C.-H., Chang, C.-Y., Chen, H.-H., and Lin, C.-S. Immune response against grouper nervous necrosis virus by vaccination of virus-like particles. Vaccine 24, 6282-6287, 2006.

    Marx, V. Method of the Year: spatially resolved transcriptomics. Nature Methods 18, 9-14, 2021.

    Mills, K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nature Reviews Immunology 23, 38-54, 2023.
    Mojzesz, M., Widziolek, M., Adamek, M., Orzechowska, U., Podlasz, P., Prajsnar, T.K., Pooranachandran, N., Pecio, A., Michalik, A., Surachetpong, W., Chadzinska, M., and Rakus, K. Tilapia Lake Virus-Induced Neuroinflammation in Zebrafish: Microglia Activation and Sickness Behavior. Frontiers in Immunology Volume 12 - 2021, 2021.

    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621-628, 2008.

    Munday, B.L., Kwang, J., and Moody, N. Betanodavirus infections of teleost fish: a review. Journal of Fish Diseases 25, 127-142, 2002.

    Paracha, U.Z., Fatima, K., Alqahtani, M., Chaudhary, A., Abuzenadah, A., Damanhouri, G., and Qadri, I. Oxidative stress and hepatitis C virus. Virol J 10, 251, 2013.

    Pasparakis, M., and Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311-320, 2015.

    Szabo, P.A., Levitin, H.M., Miron, M., Snyder, M.E., Senda, T., Yuan, J., Cheng, Y.L., Bush, E.C., Dogra, P., Thapa, P., Farber, D.L., and Sims, P.A. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nature Communications 10, 4706, 2019.

    Toubanaki, D.K., Efstathiou, A., and Karagouni, E. Transcriptomic Analysis of Fish Hosts Responses to Nervous Necrosis Virus. Pathogens 11, 2022.

    Wayha, S., Koiwai, K., Sano, M., Hirono, I., and Kondo, H. Application of nervous necrosis virus capsid protein-based antigen-presenting particles for vaccine development. Fish Shellfish Immunol 152, 109803, 2024.

    Wei, X., Li, C., Zhang, Y., Li, K., Li, J., Ai, K., Li, K., Zhang, J., and Yang, J. Fish NF-κB couples TCR and IL-17 signals to regulate ancestral T-cell immune response against bacterial infection. Faseb j 35, e21457, 2021.

    Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L., and Wang, J. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34, W293-297, 2006.

    Zhang, C., Zhao, W.N., Liu, X.X., Song, W.Y., Peng, H.H., Yang, M., Li, P.F., Wei, J.Q., Zhou, Y.C., and Sun, Y. Development and evaluation of recombinant multi-epitopes vaccine against nervous necrosis virus. Fish Shellfish Immunol 162, 110332, 2025.

    Zhou, G.Z., Li, J., Sun, Y.H., Zhang, Q., Zhang, L., and Pei, C. Autophagy Delays Apoptotic Cell Death Induced by Siniperca chuatsi Rhabdovirus in Epithelioma Papulosum Cyprinid Cells. Viruses 13, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE