簡易檢索 / 詳目顯示

研究生: 吳岱潔
Wu, Tai-Chieh
論文名稱: 困難梭狀桿菌感染中過氧化體增生活化受體γ與結腸完整性之交互作用
Interplay of Peroxisome Proliferator-Activated Receptor-γ and Colonic Integrity during Clostridium difficile Infection
指導教授: 蔡佩珍
Tsai, Pei-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 45
中文關鍵詞: 困難梭狀桿菌感染腸道通透度過氧化小體增生活化受體γ過氧化物體增殖物效應元件
外文關鍵詞: C. difficile infection, Intestinal integrity, PPARγ, PPRE
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 困難梭狀桿菌感染會導致長期使用抗生素之病患嚴重水性腹瀉與結腸炎。根據報導由於過氧化體增生活化受體γ (PPARγ)具有免疫調控功能,故於腸炎中能作為極有潛力之治療標的。然而,PPARγ在困難梭狀桿菌致病機轉中所扮演的角色仍然不明瞭。在我們先前利用小鼠所建立的困難梭狀桿菌感染動物模式中,我們發現小鼠於感染後腸道PPARγ與緊密連結蛋白複合體之一的密封蛋白(Occludin)表現量下降。為了解PPARγ與腸道完整度的關聯性,我們使用PPARγ缺失小鼠進行實驗,發現PPARγ缺失小鼠的腸道與野生型並無不同;然而在感染困難梭狀桿菌後,PPARγ缺失小鼠比起對照組其腸道通透度和腸道菌叢散佈卻更為增加。為了更加剖析困難梭狀桿菌感染中PPARγ調控腸道完整度的方式,我們使用了產毒素菌株進行對腸道上皮細胞的感染,發現腸道上皮細胞PPARγ、密封蛋白的表現量下降與緊密連結的功能喪失。並且在使用蛋白酶體抑制劑下,證明了在困難梭狀桿菌感染當中,腸道上皮細胞內PPARγ的降解是需要蛋白酶體的作用;但使用蛋白酶體抑制劑卻無法使得密封蛋白表現量回升。在給予PPARγ的促進劑愛妥糖(Pioglitazone)的刺激下,能使得腸道上皮細胞中的密封蛋白表現量回升。為了更加直接的證實PPARγ調控密封蛋白表現的可能性,我們以電腦預測密封蛋白(Occludin)其啟動子區域是否有過氧化物體增殖物效應元件(PPRE)存在。利用染色質免疫沉澱技術證實PPARγ確實能夠直接結合於密封蛋白的啟動子區域,但在給予促進劑的刺激下PPARγ會離開結合位置。最後,於動物模式中藉由促進劑的使用同時可以降低發炎的程度、減輕病癥,並且使得困難梭狀桿菌感染引起的腸道屏障喪失減緩。綜合上述,我們的研究結果顯示降低困難梭狀桿菌感染當中,腸道PPARγ表現的下降會透由調控密封蛋白的表現引發更為嚴重的腸道通透性缺失。

    Clostridium difficile infection (CDI) causes severe colitis with watery diarrhea in long-term antibiotic treatment patients. Previous studies have showed that peroxisome proliferator-activated receptor γ (PPARγ), owing to its function in immune regulation, is a potential therapy target for colitis. However, the role of PPARγ in pathogenesis of CDI remains unclear. In our CDI mouse model, we found that levels of PPARγ and tight junction protein were decreased in colonic tissue. To further investigate the relationship between PPARγ and colonic integrity, we used PPARγ deficient mice and found there was no difference in colonic tissue in these two genotype mice. However, after infected with C. difficile, the colonic permeability and gut bacteria dissemination were significantly increased in PPARγ deficient mice than that in WT mice. To dissect the role of PPARγ on the regulation of tight junction protein, occludin, we demonstrated the levels of occludin and PPARγ were also decreased parallel in colonic epithelial cells. Simultaneously, disruption of tight junction functionality was revealed by real time cell analyzer. We demonstrated that the decreased PPARγ during CDI was proteasome dependent by treatment with proteasome inhibitors. However, proteasome inhibitors couldn’t prevent the decrease of occludin. When activation of PPARγ by treated with PPARγ agonist, pioglitazone, the mRNA and protein levels of occludin were reversed after CDI. To directly interpret the interaction of PPARγ and the occludin regulation, we predicted the possible peroxisome proliferator binding elements (PPRE) in silico. It showed that PPARγ bound at occludin promoter region by ChIP assay, but released after treated with pioglitazone. Further, we treated mice with pioglitazone, and the mice showed improvement of inflammation and intestinal integrity in the intestinal tract. Taken together, our results suggest that decrease of PPARγ might contribute to exacerbated barrier loss through down-regulation of occludin.

    口試委員會審定書 中文摘要 ii ABSTRACT iii 誌謝 iv CONTENTS v LIST OF TABLES vii LIST OF FIURES viii Chapter 1 Introduction 1 1.1 General introduction to Clostridium difficile 1 1.2 Intestinal barrier and tight junction 2 1.3 Regulation of occludin 3 1.4 Peroxisome proliferator activated receptor gamma 4 1.5 Degradation and activation of PPARγ 5 1.6 Treatment of CDI 6 Chapter 2 Material and Methods 8 2.1 Bacteria strain 8 2.2 Bacterial culture 8 2.3 Cell line 8 2.4 In-vitro cell infection 9 2.5 PPARγ phosphorylation 9 2.6 Proteasome activity assay 9 2.7 xCELLigence system 10 2.8 Animal 10 2.9 C. difficile infection animal model 11 2.9.1 C57BL/6 mouse model 11 2.9.2 Luminescent reporter mouse model 11 2.9.3 Pioglitazone treatment 12 2.9.4 In vivo imaging 12 2.10 Bacteria dissemination 12 2.11 Intestinal permeability measurement 12 2.12 Histopathology examination 13 2.13 Immunofluorescent staining 13 2.14 RNA extraction 14 2.15 Reverse transcription and real-time PCR 14 2.16 Tissue protein and cell lysate protein extraction 15 2.17 Western blotting 15 2.18 Chromatin immunoprecipitation assay 15 2.19 Data analysis 16 Chapter 3 Results 17 3.1 PPARγ and tight junction were decreased in colonic tissue after CDI in vivo 17 3.2 Intestinal permeability was significantly increased in PPARγ deficient mice after CDI 17 3.3 PPARγ and tight junction protein were decreased in parallel with reduced cell integrity during CDI 18 3.4 Degradation of PPARγ during C. difficile infection was proteasome-dependent 19 3.5 PPARγ agonist, pioglitazone, reversed CDI-induced barrier dysfunction 20 3.6 PPARγ bound to the PPRE in the promoter region of occludin 20 3.7 Pioglitazone attenuated inflammation and barrier dysfunction induced by CDI in vivo 21 Chapter 4 Discussion 22 REFERENCES 26 APPENDIX

    1. Hall, I. C., and O'Toole, E. (1935) Intestinal flora in new-born infants: With a description of a new pathogenic anaerobe, bacillus difficilis. American Journal of Diseases of Children 49, 390-402
    2. Bartlett, J. G., Moon, N., Chang, T. W., Taylor, N., and Onderdonk, A. B. (1978) Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75, 778-782
    3. Bartlett, J. G. (1997) Clostridium difficile infection: pathophysiology and diagnosis. Seminars in gastrointestinal disease 8, 12-21
    4. Barbut, F., and Petit, J. C. (2000) [Epidemiology, risk factors and prevention of Clostridium difficile nosocomial infections]. Pathologie-biologie 48, 745-755
    5. Hung, Y. P., Lee, J. C., Lin, H. J., Liu, H. C., Wu, Y. H., Tsai, P. J., and Ko, W. C. (2014) Clinical impact of Clostridium difficile colonization. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi
    6. Thibault, A., Miller, M. A., and Gaese, C. (1991) Risk factors for the development of Clostridium difficile-associated diarrhea during a hospital outbreak. Infection control and hospital epidemiology : the official journal of the Society of Hospital Epidemiologists of America 12, 345-348
    7. Bignardi, G. E. (1998) Risk factors for Clostridium difficile infection. The Journal of hospital infection 40, 1-15
    8. Heyman, M., Corthier, G., Lucas, F., Meslin, J. C., and Desjeux, J. F. (1989) Evolution of the caecal epithelial barrier during Clostridium difficile infection in the mouse. Gut 30, 1087-1093
    9. Moore, R., Pothoulakis, C., LaMont, J. T., Carlson, S., and Madara, J. L. (1990) C. difficile toxin A increases intestinal permeability and induces Cl- secretion. The American journal of physiology 259, G165-172
    10. Arrieta, M. C., Bistritz, L., and Meddings, J. B. (2006) Alterations in intestinal permeability. Gut 55, 1512-1520
    11. Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S. (1993) Occludin: a novel integral membrane protein localizing at tight junctions. The Journal of cell biology 123, 1777-1788
    12. McCarthy, K. M., Skare, I. B., Stankewich, M. C., Furuse, M., Tsukita, S., Rogers, R. A., Lynch, R. D., and Schneeberger, E. E. (1996) Occludin is a functional component of the tight junction. Journal of Cell Science 109, 2287-2298
    13. Saitou, M., Furuse, M., Sasaki, H., Schulzke, J.-D., Fromm, M., Takano, H., Noda, T., and Tsukita, S. (2000) Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Molecular Biology of the Cell 11, 4131-4142
    14. Wu, Z., Nybom, P., and Magnusson, K. E. (2000) Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cellular microbiology 2, 11-17
    15. Singh, U., Van Itallie, C. M., Mitic, L. L., Anderson, J. M., and McClane, B. A. (2000) CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. The Journal of biological chemistry 275, 18407-18417
    16. McNamara, B. P., Koutsouris, A., x, Connell, C. B., Nougayr, xE, de, J.-P., Donnenberg, M. S., and Hecht, G. (2001) Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. The Journal of clinical investigation 107, 621-629
    17. Suzuki, T. (2013) Regulation of intestinal epithelial permeability by tight junctions. Cellular and molecular life sciences : CMLS 70, 631-659
    18. Scudamore, C. L., Jepson, M. A., Hirst, B. H., and Miller, H. R. (1998) The rat mucosal mast cell chymase, RMCP-II, alters epithelial cell monolayer permeability in association with altered distribution of the tight junction proteins ZO-1 and occludin. European journal of cell biology 75, 321-330
    19. Hecht, G., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1988) Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. The Journal of clinical investigation 82, 1516-1524
    20. Hecht, G., Koutsouris, A., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1992) Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102, 416-423
    21. Pothoulakis, C. (2000) Effects of Clostridium difficile toxins on epithelial cell barrier. Annals of the New York Academy of Sciences 915, 347-356
    22. Nusrat, A., von Eichel-Streiber, C., Turner, J. R., Verkade, P., Madara, J. L., and Parkos, C. A. (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infection and immunity 69, 1329-1336
    23. Lowenkron, S. E., Waxner, J., Khullar, P., Ilowite, J. S., Niederman, M. S., and Fein, A. M. (1996) Clostridium difficile infection as a cause of severe sepsis. Intensive care medicine 22, 990-994
    24. Shao, D., and Lazar, M. A. (1997) Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. The Journal of biological chemistry 272, 21473-21478
    25. Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A., and Evans, R. M. (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241-252
    26. Berger, J., and Moller, D. E. (2002) The mechanisms of action of PPARs. Annual review of medicine 53, 409-435
    27. Takada, I., and Kato, S. (2005) [PPARs target genes]. Nihon rinsho. Japanese journal of clinical medicine 63, 573-577
    28. Peyrin-Biroulet, L., Beisner, J., Wang, G., Nuding, S., Oommen, S. T., Kelly, D., Parmentier-Decrucq, E., Dessein, R., Merour, E., Chavatte, P., Grandjean, T., Bressenot, A., Desreumaux, P., Colombel, J. F., Desvergne, B., Stange, E. F., Wehkamp, J., and Chamaillard, M. (2010) Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proceedings of the National Academy of Sciences of the United States of America 107, 8772-8777
    29. Lefebvre, A. M., Chen, I., Desreumaux, P., Najib, J., Fruchart, J. C., Geboes, K., Briggs, M., Heyman, R., and Auwerx, J. (1998) Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nature medicine 4, 1053-1057
    30. Su, C. G., Wen, X., Bailey, S. T., Jiang, W., Rangwala, S. M., Keilbaugh, S. A., Flanigan, A., Murthy, S., Lazar, M. A., and Wu, G. D. (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. The Journal of clinical investigation 104, 383-389
    31. Martin, H. (2009) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation research 669, 1-7
    32. Fajas, L., Auboeuf, D., Raspe, E., Schoonjans, K., Lefebvre, A. M., Saladin, R., Najib, J., Laville, M., Fruchart, J. C., Deeb, S., Vidal-Puig, A., Flier, J., Briggs, M. R., Staels, B., Vidal, H., and Auwerx, J. (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. The Journal of biological chemistry 272, 18779-18789
    33. Dubuquoy, L., Jansson, E. A., Deeb, S., Rakotobe, S., Karoui, M., Colombel, J. F., Auwerx, J., Pettersson, S., and Desreumaux, P. (2003) Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124, 1265-1276
    34. Varley, C. L., Garthwaite, M. A., Cross, W., Hinley, J., Trejdosiewicz, L. K., and Southgate, J. (2006) PPARgamma-regulated tight junction development during human urothelial cytodifferentiation. Journal of cellular physiology 208, 407-417
    35. Ponferrada, A., Caso, J. R., Alou, L., Colon, A., Sevillano, D., Moro, M. A., Lizasoain, I., Menchen, P., Gomez-Lus, M. L., Lorenzo, P., Cos, E., Leza, J. C., and Menchen, L. (2007) The role of PPARgamma on restoration of colonic homeostasis after experimental stress-induced inflammation and dysfunction. Gastroenterology 132, 1791-1803
    36. Huang, W., Eum, S. Y., Andras, I. E., Hennig, B., and Toborek, M. (2009) PPARalpha and PPARgamma attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23, 1596-1606
    37. Wang, X., Pan, L., Lu, J., Li, N., and Li, J. (2012) N-3 PUFAs attenuate ischemia/reperfusion induced intestinal barrier injury by activating I-FABP-PPARgamma pathway. Clinical nutrition (Edinburgh, Scotland) 31, 951-957
    38. Adachi, M., Kurotani, R., Morimura, K., Shah, Y., Sanford, M., Madison, B. B., Gumucio, D. L., Marin, H. E., Peters, J. M., Young, H. A., and Gonzalez, F. J. (2006) Peroxisome proliferator activated receptor γ in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55, 1104-1113
    39. Mohapatra, S. K., Guri, A. J., Climent, M., Vives, C., Carbo, A., Horne, W. T., Hontecillas, R., and Bassaganya-Riera, J. (2010) Immunoregulatory Actions of Epithelial Cell PPAR γ at the Colonic Mucosa of Mice with Experimental Inflammatory Bowel Disease. PloS one 5, e10215
    40. Viladomiu, M., Hontecillas, R., Pedragosa, M., Carbo, A., Hoops, S., Michalak, P., Michalak, K., Guerrant, R. L., Roche, J. K., Warren, C. A., and Bassaganya-Riera, J. (2012) Modeling the role of peroxisome proliferator-activated receptor gamma and microRNA-146 in mucosal immune responses to Clostridium difficile. PloS one 7, e47525
    41. Floyd, Z. E., and Stephens, J. M. (2002) Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. The Journal of biological chemistry 277, 4062-4068
    42. Chen, X., Yang, L., and Zhai, S. D. (2012) Risk of cardiovascular disease and all-cause mortality among diabetic patients prescribed rosiglitazone or pioglitazone: a meta-analysis of retrospective cohort studies. Chinese medical journal 125, 4301-4306
    43. Cohen, J. S. (2006) Risks of troglitazone apparent before approval in USA. Diabetologia 49, 1454-1455
    44. Grygiel-Gorniak, B. (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutrition journal 13, 17
    45. Iv, E. C., Iii, E. C., and Johnson, D. A. (2014) Clinical update for the diagnosis and treatment of Clostridium difficile infection. World journal of gastrointestinal pharmacology and therapeutics 5, 1-26
    46. Brown, A. T., and Seifert, C. F. Effect of Treatment Variation on Outcomes in Patients with Clostridium difficile. The American Journal of Medicine
    47. Are, A., Aronsson, L., Wang, S., Greicius, G., Lee, Y. K., Gustafsson, J. A., Pettersson, S., and Arulampalam, V. (2008) Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 105, 1943-1948
    48. Chen, X., Katchar, K., Goldsmith, J. D., Nanthakumar, N., Cheknis, A., Gerding, D. N., and Kelly, C. P. (2008) A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984-1992
    49. Koizumi, J., Kojima, T., Ogasawara, N., Kamekura, R., Kurose, M., Go, M., Harimaya, A., Murata, M., Osanai, M., Chiba, H., Himi, T., and Sawada, N. (2008) Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation. Molecular pharmacology 74, 432-442
    50. Chen, M. L., Pothoulakis, C., and LaMont, J. T. (2002) Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. The Journal of biological chemistry 277, 4247-4254
    51. Zemljic, M., Rupnik, M., Scarpa, M., Anderluh, G., Palu, G., and Castagliuolo, I. (2010) Repetitive domain of Clostridium difficile toxin B exhibits cytotoxic effects on human intestinal epithelial cells and decreases epithelial barrier function. Anaerobe 16, 527-532
    52. Mankertz, J., Tavalali, S., Schmitz, H., Mankertz, A., Riecken, E. O., Fromm, M., and Schulzke, J. D. (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113 ( Pt 11), 2085-2090
    53. Kaplan, J. M., Hake, P. W., Denenberg, A., Nowell, M., Piraino, G., and Zingarelli, B. (2010) Phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 Is associated with the downregulation of peroxisome proliferator-activated receptor (PPAR)-gamma during polymicrobial sepsis. Molecular medicine 16, 491-497
    54. Na, X., Zhao, D., Koon, H. W., Kim, H., Husmark, J., Moyer, M. P., Pothoulakis, C., and Lamont, J. T. (2005) Clostridium difficile toxin B activates the EGF receptor and the ERK/MAP kinase pathway in human colonocytes. Gastroenterology 128, 1002-1011
    55. Goldenberg, J. Z., Ma, S. S., Saxton, J. D., Martzen, M. R., Vandvik, P. O., Thorlund, K., Guyatt, G. H., and Johnston, B. C. (2013) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. The Cochrane database of systematic reviews 5, Cd006095

    無法下載圖示 校內:2019-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE