簡易檢索 / 詳目顯示

研究生: 陳錦翰
Chen, Chin-Han
論文名稱: 以固態裂解法合成氮化鎵與其行甲烷轉化為乙腈反應: 不同固體氮源之影響
Catalytic conversion of methane to acetonitrile over solid-phase-pyrolysis synthesized GaN: The effect of melamine, melem, and g-C3N4 as the precursors
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 129
中文關鍵詞: 乙腈氮化鎵甲烷
外文關鍵詞: Acetonitrile, Gallium nitride, Mobile nitrogen, Methane
相關次數: 點閱:80下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙腈(Acetonitrile, AcCN)是一廣泛被應用於各種領域(如: 製藥、液相層析、電解液等)高價值的化學品,而利用觸媒將甲烷(methane)轉化為乙腈之方法尚未被探討。本研究以不同固體氮源(melamine, melem, g-C3N4)合成氮化鎵(GaN),探討因不同固體氮源及鎵的前驅物(氧化鎵、硝酸鎵)合成之 GaN 對甲烷轉乙腈反應性之影響。結果顯示,無論使用何種固體氮源,皆可以合成出活化甲烷的必要活性物質 GaN,但相較於使用 melamine、melem 作為固體氮源,以 g-C3N4 合成出之 GaN 觸媒擁有著極為良好的鎵分散性以及最多的 CN-活性物質,且擁有最佳的觸媒表現(乙腈之產率較高)。此外,當合成 GaN 時,提升 g-C3N4 的添加量(提高前驅物 N/Ga 重量比),可以使 Ga 分散性愈好以及提高殘留於觸媒中的 CN-活性物質量,而反應性也隨之提升。經由測試商業用之 GaN 行甲烷轉化反應得知,雖然仍可以觀察到甲烷轉化成的 C2 產物,但乙腈的產量微乎其微,因此我們認為,欲將甲烷直接轉化成乙腈,除了活化甲烷所需要的 GaN 外,仍可能有其餘的活性點位。我們進行一系列的觸媒物化性鑑定,如 XRD、BET、XAS、XPS、FTIR、Air- IR、CH4-IR、RAMAN、TGA、EA、Air-TPSR,於本文中進行探討。

    Acetonitrile (AcCN) is a valuable chemical with many applications such as pharmaceuticals, liquid chromatography, electrolyte, and platform chemical. The production of AcCN from methane with catalysis method has not be developed yet. This study investigated the mixtures of Ga (β-Ga2O3 or gallium nitrate hydrate) and N (melamine (C3N6), melem (C3N5), or g-C3N4) precursors in the modified solid-state pyrolysis and applied their derived GaN catalysts in the nonoxidative conversion of methane to acetonitrile (AcCN). Except the effect of different nitrogen sources and nitrogen precursor amount (N/Ga precursor weight ratio = 0.5, 1, 2) was discussed, we also found the indispensable active sites in as-synthesized GaN for producing AcCN. Commercial GaN showed almost no activity for producing AcCN, the main product with as-synthesized gallium nitrides. However, we still can observe C2 species, the main nonoxidative products, during the reaction for all of these catalysts. We suggested that the active phase for activating methane, which was GaN, was successfully synthesized. Moreover, there is another important active specie for generating AcCN. Possibly from the mobile N species on the surface.

    摘要 I Abstract II 誌謝 XIX 表目錄 XXIII 圖目錄 XXIV 第一章 前言 1 1-1 引言 1 1-2 研究動機與設計 3 第二章 文獻回顧 4 2-1乙腈之簡介 4 2-2 甲烷之應用 5 2-3 過度金屬氮化物之簡介 10 2-3-1 過度金屬氮化物 10 2-3-2 氮化鎵之簡介 14 2-3-3 氮化鎵之製備 17 第三章 實驗 21 3-1 藥品與實驗設備 21 3-2 觸媒之合成與製備 23 3-2-1 Melem 及 g-C3N4 之製備 23 3-2-2 GaN之製備 24 3-2-3 觸媒之命名方式 24 3-3 觸媒行甲烷轉乙腈(Acetonitrile)之反應性測試 25 3-4 產物定性與定量分析 26 3-5 X 射線繞射儀 (X-ray diffractometer, XRD) 27 3-6 高解析感應耦合電漿質譜儀 (Inductively coupled plasma-mass spectroscopy, ICP-MS) 30 3-7 元素分析儀 (Elemental analyzer, EA) 31 3-8 比表面積及孔徑分析儀(BET) 32 3-9 X 射線吸收光譜(X-ray absorption spectroscopy, XAS) 37 3-10 X射線光電子能譜分析(X-ray photoelectron spectroscopy, XPS) 40 3-11 傅立葉轉換紅外光譜儀(FTIR) 42 3-11-1 傅立葉轉換紅外光譜儀(FTIR) 42 3-11-2 原位(in-situ)紅外光譜儀 44 3-12 拉曼光譜儀 (Raman Spectrometer) 46 3-13 熱重分析儀(Thermogravimetric analyzer, TGA) 48 3-14 氣象層析儀(Gas chromatograph, GC) 49 3-15 質譜分析儀(Mass spectrometer, MS) 52 第四章 結果與討論 56 4-1 XRD鑑定 56 4-1-1 固體氮源之XRD鑑定 56 4-1-2 觸媒之XRD鑑定 57 4-2 觸媒之元素組成、比表面積、孔體積 62 4-3 觸媒行甲烷轉乙腈之反應性結果 65 4-4 觸媒之 Ga K-edge X 射線吸收能譜 75 4-5 觸媒之紅外線吸收光譜 79 4-5-1 觸媒之紅外線吸收光譜 79 4-5-2 觸媒之原位(In-situ)氮氣紅外光譜 81 4-5-3 觸媒之原位(In-situ)甲烷紅外光譜 82 4-6 觸媒之X射線光電子能譜 83 4-6-1 觸媒之 Ga 3d X 射線光電子能譜 83 4-6-2 觸媒之 N 1s X 射線光電子能譜 87 4-6-3 觸媒之 C 1s X 射線光電子能譜 91 4-6-4 觸媒之 O 1s X 射線光電子能譜 95 4-6-5 觸媒之表面元素組成 99 4-7分散性良好之 GaN-(C3N4)-(x)觸媒合成機制推測 100 4-8 CN-活性物質移除影響分析 102 4-8-1 經氧化處理觸媒之 XRD 鑑定 102 4-8-2 觸媒之熱重分析 103 4-8-3 觸媒之氧氣程溫氧化(Temperature-programmed oxidation, TPO) 105 4-8-4 觸媒之原位(In-situ)空氣紅外光譜 106 4-8-5 經氧化處理觸媒之 Ga 3d X 射線光電子能譜 108 4-8-6 經氧化處理觸媒之 N 1s X 射線光電子能譜 109 4-8-7 經氧化處理觸媒之 C 1s X 射線光電子能譜 110 4-8-8 經氧化處理觸媒之 O 1s X 射線光電子能譜 111 4-8-9 經氧化處理觸媒行甲烷轉乙腈之反應性結果 112 4-9 甲烷直接轉化成乙腈反應機制推測 114 4-10 反應後之觸媒鑑定 115 4-10-1 反應後觸媒之 XRD 鑑定 115 4-10-2 反應後觸媒之熱重分析 116 4-10-3 反應後觸媒之拉曼光譜 117 第五章 結論 118 第六章 參考資料 119

    1. Research, D.B.M. Global acetonitrile market. 2021; Available from: https://www.databridgemarketresearch.com/reports/global-acetonitrile-market.
    2. Dou, Q., et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy & Environmental Science, 2018. 11(11): p. 3212-3219.
    3. Aljabour, A., et al., Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Applied Catalysis B: Environmental, 2018. 229: p. 163-170.
    4. Abdulla-Al-Mamun, M., Y. Kusumoto, and M. Muruganandham, Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Materials Letters, 2009. 63(23): p. 2007-2009.
    5. Tang, W., et al., Transfer free energy of micro-hydrated ion clusters from water into acetonitrile solvent. Chemical Engineering Science, 2021. 237: p. 116561-116568.
    6. Iwakuma, Y., et al., The Limited Contribution of the Analyte Partition to the Water-Rich Layer in Immobilized Artificial Membrane Chromatography with an Acetonitrile-Rich Binary Mobile Phase. Chromatographia, 2019. 82(9): p. 1311-1320.
    7. Alkaya, D.B., S.A. Seyhan, and B.N. Ozturk, Influence of extraction method on antioxidant properties of Rheum ribes root extract. Ovidius University Annals of Chemistry, 2019. 30(1): p. 44-47.
    8. Grasselli, R.K., Advances and future trends in selective oxidation and ammoxidation catalysis. Catalysis Today, 1999. 49(1-3): p. 141-153.
    9. Ayari, F., et al., Ammoxidation of ethylene over low and over-exchanged Cr–ZSM-5 catalysts. Applied Catalysis A: General, 2012. 415-416: p. 132-140.
    10. Ayari, F., et al., Effect of the chromium precursor nature on the physicochemical and catalytic properties of Cr–ZSM-5 catalysts: Application to the ammoxidation of ethylene. Journal of Molecular Catalysis A: Chemical, 2011. 339(1-2): p. 8-16.
    11. Zhang, Y., et al., Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia. Green Chemistry, 2019. 21(4): p. 812-820.
    12. Zhang, X., et al., Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile. Bioresour Technol, 2019. 290: p. 121800.
    13. Lee, B.J., et al., Non-oxidative aromatization and ethylene formation over Ga/HZSM-5 catalysts using a mixed feed of methane and ethane. Fuel, 2019. 253: p. 449-459.
    14. Uslamin, E.A., et al., Different mechanisms of ethane aromatization over Mo/ZSM-5 and Ga/ZSM-5 catalysts. Catalysis Today, 2021. 369: p. 184-192.
    15. Gim, M.Y., et al., BTX production by coaromatization of methane and propane over gallium oxide supported on mesoporous HZSM-5. Molecular Catalysis, 2017. 439: p. 134-142.
    16. Song, C., et al., Enhanced productivity of benzene, toulene, and xylene from the co-aromatization of methane and propane over gallium supported on mesoporous ZSM-5 and ZSM-11. Fuel, 2019. 251: p. 404-412.
    17. Uslamin, E.A., et al., Co-Aromatization of Furan and Methanol over ZSM-5—A Pathway to Bio-Aromatics. ACS Catalysis, 2019. 9(9): p. 8547-8554.
    18. Kiani, D., et al., Oxidative Coupling of Methane (OCM) by SiO2-Supported Tungsten Oxide Catalysts Promoted with Mn and Na. ACS Catalysis, 2019. 9(7): p. 5912-5928.
    19. Kiani, D., et al., Existence and Properties of Isolated Catalytic Sites on the Surface of β-Cristobalite-Supported, Doped Tungsten Oxide Catalysts (WOx/β-SiO2, Na-WOx/β-SiO2, Mn-WOx/β-SiO2) for Oxidative Coupling of Methane (OCM): A Combined Periodic DFT and Experimental Study. ACS Catalysis, 2020. 10(8): p. 4580-4592.
    20. Kiani, D., et al., Synthesis and molecular structure of model silica-supported tungsten oxide catalysts for oxidative coupling of methane (OCM). Catalysis Science & Technology, 2020. 10(10): p. 3334-3345.
    21. Larring, Y., et al., Fabrication process parameters significantly affect the perovskite oxygen carriers materials (OCM) performance in chemical looping with oxygen uncoupling (CLOU). Journal of Thermal Analysis and Calorimetry, 2019. 140(2): p. 577-589.
    22. Sim, Y., et al., Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane. Catalysis Today, 2020. 352: p. 134-139.
    23. Lee, M.R., et al., A kinetic model for the oxidative coupling of methane over Na2WO4/Mn/SiO2. Fuel Processing Technology, 2012. 96: p. 175-182.
    24. Sadeghzadeh Ahari, J., S. Zarrinpashne, and M.T. Sadeghi, Micro-kinetic modeling of OCM reactions over Mn/Na2WO4/SiO2 catalyst. Fuel Processing Technology, 2013. 115: p. 79-87.
    25. Lomonosov, V.I., Y.A. Gordienko, and M.Y. Sinev, Kinetics of the oxidative coupling of methane in the presence of model catalysts. Kinetics and Catalysis, 2013. 54(4): p. 451-462.
    26. Beck, B., et al., Oxidative coupling of methane—A complex surface/gas phase mechanism with strong impact on the reaction engineering. Catalysis Today, 2014. 228: p. 212-218.
    27. Fleischer, V., et al., Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments. Journal of Catalysis, 2016. 341: p. 91-103.
    28. Galadima, A. and O. Muraza, Advances in Catalyst Design for the Conversion of Methane to Aromatics: A Critical Review. Catalysis Surveys from Asia, 2019. 23(3): p. 149-170.
    29. Tan, P., Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. Journal of Catalysis, 2016. 338: p. 21-29.
    30. Denardin, F.G. and O.W. Perez-Lopez, Methane dehydroaromatization over Fe-M/ZSM-5 catalysts (M= Zr, Nb, Mo). Microporous and Mesoporous Materials, 2020. 295: p. 109961-109968.
    31. Agote‐Arán, M., et al., Implications of the Molybdenum Coordination Environment in MFI Zeolites on Methane Dehydroaromatisation Performance. ChemCatChem, 2019. 12(1): p. 294-304.
    32. Julian, I., et al., Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization. Applied Catalysis B: Environmental, 2020. 263: p. 118360-118372.
    33. Hao, J., et al., Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction. Journal of Energy Chemistry, 2021. 52: p. 372-376.
    34. Sakbodin, M., et al., Hydrogen-Permeable Tubular Membrane Reactor: Promoting Conversion and Product Selectivity for Non-Oxidative Activation of Methane over an Fe(c)SiO2 Catalyst. Angew Chem Int Ed Engl, 2016. 55(52): p. 16149-16152.
    35. Liu, Y., et al., Unravelling the Enigma of Nonoxidative Conversion of Methane on Iron Single-Atom Catalysts. Angew Chem Int Ed Engl, 2020. 59(42): p. 18586-18590.
    36. Schwach, P., X. Pan, and X. Bao, Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev, 2017. 117(13): p. 8497-8520.
    37. Li, L., et al., Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. Angew Chem Int Ed Engl, 2014. 53(51): p. 14106-9.
    38. Nagai, M., Transition-metal nitrides for hydrotreating catalyst—Synthesis, surface properties, and reactivities. Applied Catalysis A: General, 2007. 322: p. 178-190.
    39. Dongil, A.B., Recent Progress on Transition Metal Nitrides Nanoparticles as Heterogeneous Catalysts. Nanomaterials (Basel), 2019. 9(8): p. 1-18.
    40. Hargreaves, J.S.J., Heterogeneous catalysis with metal nitrides. Coordination Chemistry Reviews, 2013. 257(13-14): p. 2015-2031.
    41. Leybo, D.V., et al., Bimetallic Ni-Mo Nitride as the Carbon Dioxide Hydrogenation Catalyst. Advanced Materials Research, 2013. 872: p. 3-9.
    42. Razzaq, R., et al., A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chemical Engineering Journal, 2015. 262: p. 1090-1098.
    43. Fu, X., et al., Bimetallic molybdenum nitride Co3Mo3N: a new promising catalyst for CO2 reforming of methane. Catalysis Science & Technology, 2017. 7(8): p. 1671-1678.
    44. Li, J., et al., Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017. 42(5): p. 2996-3005.
    45. Wang, T., et al., Trends and Control in the Nitridation of Transition-Metal Surfaces. ACS Catalysis, 2017. 8(1): p. 63-68.
    46. McKay, D., et al., The influence of phase and morphology of molybdenum nitrides on ammonia synthesis activity and reduction characteristics. Journal of Solid State Chemistry, 2008. 181(2): p. 325-333.
    47. McGee, R.C.V., S.K. Bej, and L.T. Thompson, Basic properties of molybdenum and tungsten nitride catalysts. Applied Catalysis A: General, 2005. 284(1-2): p. 139-146.
    48. Zhao, H., et al., Facile route to metal nitrides through melamine and metal oxides. Journal of Materials Chemistry, 2006. 16(45): p. 4407-4412.
    49. Qiu, Y. and L. Gao, Metal–Urea Complex—A Precursor to Metal Nitrides. Journal of the American Ceramic Society, 2008. 87: p. 352-357.
    50. Rounaghi, S.A., et al., Mechanochemical reaction of Al and melamine: a potential approach towards the in situ synthesis of aluminum nitride-carbon nanotube nanocomposites. Phys Chem Chem Phys, 2019. 21(39): p. 22121-22131.
    51. Ma, X., et al., Melamine-assisted synthesis of Fe3N featuring highly reversible crystalline-phase transformation for ultrastable sodium ion storage. Journal of Materials Chemistry A, 2020. 8(14): p. 6768-6775.
    52. Podsiadło, S., Stages of the synthesis of gallium nitride with the use of urea. thermochimica acta, 1995. 256(2): p. 367-373.
    53. Jürgens, B., et al., Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. American Chemical Society, 2003. 125(34): p. 10288-10300.
    54. Lei, M., et al., Synthesis of transition metal carbide nanoparticles through melamine and metal oxides. Journal of the European Ceramic Society, 2008. 28(8): p. 1671-1677.
    55. Kente, T. and S.D. Mhlanga, Gallium nitride nanostructures: Synthesis, characterization and applications. Journal of Crystal Growth, 2016. 444: p. 55-72.
    56. Ding, X., Y. Zhou, and J. Cheng, A review of gallium nitride power device and its applications in motor drive. CES Transactions on Electrical Machines and Systems, 2019. 3(1): p. 54-64.
    57. Khan, M.A.H. and M.V. Rao, Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review. Sensors (Basel), 2020. 20(14): p. 1-22.
    58. Liu, M., et al., Photocatalytic Methylation of Nonactivated sp3 and sp2 C–H Bonds Using Methanol on GaN. ACS Catalysis, 2020. 10(11): p. 6248-6253.
    59. Dutta, K., M. Shahryari, and J. Kopyscinski, Direct Nonoxidative Methane Coupling to Ethylene over Gallium Nitride: A Catalyst Regeneration Study. Industrial & Engineering Chemistry Research, 2019. 59(10): p. 4245-4256.
    60. Chaudhari, V., et al., Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory. Molecular Catalysis, 2020. 482: p. 110606-110618.
    61. Dutta, K., et al., Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor. Catalysis Communications, 2018. 106: p. 16-19.
    62. Dutta, K., et al., Methane conversion to ethylene over GaN catalysts. Effect of catalyst nitridation. Applied Catalysis A: General, 2020. 595: p. 117430-117443.
    63. Han, W., et al., Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction. 1997. 277(5330): p. 1287-1289.
    64. Cheng, G.S., et al., Large-scale synthesis of single crystalline gallium nitride nanowires. Applied Physics Letters, 1999. 75(16): p. 2455-2457.
    65. Han, W., et al., Synthesis of GaN–carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere. Applied Physics Letters, 2000. 76(5): p. 652-654.
    66. Duan, X. and C.M. Lieber, Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires. American Chemical Society, 2000. 122(1): p. 188-189.
    67. Koester, R., et al., Self-assembled growth of catalyst-free GaN wires by metal-organic vapour phase epitaxy. Nanotechnology, 2010. 21(1): p. 015602.
    68. Kang, M.S., et al., Gallium nitride nanostructures for light-emitting diode applications. Nano Energy, 2012. 1(3): p. 391-400.
    69. Chen, B.X., et al., High-Quality Ultra-Fine GaN NanowiresSynthesized Via Chemical Vapor Deposition. Advanced Materials Research, 2003: p. 419-421.
    70. Cai, X.M., A.B. Djurišić, and M.H. Xie, GaN nanowires: CVD synthesis and properties. Thin Solid Films, 2006. 515(3): p. 984-989.
    71. Zhang, L., et al., Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane. Journal of CO2 Utilization, 2020. 38: p. 306-313.
    72. Zheng, H., et al., Highly Efficient Metal-Free Two-Dimensional Luminescent Melem Nanosheets for Bioimaging. ACS Appl Mater Interfaces, 2020. 12(2): p. 2145-2151.
    73. Li, Z., et al., Local structures of nanocrystalline GaN studied by XAFS. Journal of Synchrotron Radiation, 2001. 8: p. 830-832.
    74. Hu, J., P. Yang, and C.M. Lieber, Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials. PHYSICAL REVIEW B, 1997. 57: p. 3185-3188.
    75. Weiy, A., et al., Effects of nitrogen on the structure and properties of highly tetrahedral amorphous carbon films. Journal of Physics D: Applied Physics, 1998: p. 1522-1526.
    76. Yuan, X., et al., Combinatorial Vibration-Mode Assignment for the FTIR Spectrum of Crystalline Melamine: A Strategic Approach toward Theoretical IR Vibrational Calculations of Triazine-Based Compounds. J Phys Chem A, 2016. 120(38): p. 7427-33.
    77. Praus, P., et al., Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide. Materials Chemistry and Physics, 2017. 193: p. 438-446.
    78. Ravi, L., et al., Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications. Applied Surface Science, 2018. 449: p. 213-220.
    79. Moldovan, G., et al., Effects of KOH etching on the properties of Ga-polar n-GaN surfaces. Philosophical Magazine, 2006. 86(16): p. 2315-2327.
    80. Li, P., et al., Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates. RSC Advances, 2020. 10(4): p. 2096-2103.
    81. Elbanna, O., M. Fujitsuka, and T. Majima, g-C3N4/TiO2 Mesocrystals Composite for H2 Evolution under Visible-Light Irradiation and Its Charge Carrier Dynamics. ACS Appl Mater Interfaces, 2017. 9(40): p. 34844-34854.
    82. Cai, M., et al., Cobaloxime anchored MoS2 nanosheets as electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018. 6(1): p. 138-144.
    83. Yu, H., et al., Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv Mater, 2017. 29(16): p. 1605148-1605154.
    84. Zou, J., et al., A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Journal of Materials Science, 2019. 54(9): p. 6867-6881.
    85. Jindal, A., S. Basu, and A.C. P, Electrospun carbon nitride supported on poly(vinyl) alcohol as an electrocatalyst for oxygen reduction reactions. RSC Advances, 2015. 5(85): p. 69378-69387.
    86. Miller, T.S., et al., Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys Chem Chem Phys, 2017. 19(24): p. 15613-15638.
    87. Chen, Z., et al., Single-Atom AuI–N3 Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020. 10(3): p. 1865-1870.
    88. Yan, W., L. Yan, and C. Jing, Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Applied Catalysis B: Environmental, 2019. 244: p. 475-485.
    89. Mikhail V. Luzgin, A.A.G., Vladimir A. Rogov, Alexander V. Toktarev, and a.A.G.S. Valentin N. Parmon, The “Alkyl” and “Carbenium” Pathways of Methane Activation on Ga-Modified Zeolite BEA: 13C Solid-State NMR and GC-MS Study of Methane Aromatization in the Presence of Higher Alkane. J Phys Chem C, 2010: p. 21555-21561.
    90. Dizajghorbani-Aghdam, H., et al., SERS-Active Cu Nanoparticles on Carbon Nitride Support Fabricated Using Pulsed Laser Ablation. Nanomaterials (Basel), 2019. 9(9): p. 1-16.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE