| 研究生: |
顏君安 Yan, Jyun-An |
|---|---|
| 論文名稱: |
無氧釩硫錯合物之反應性的探討 Reactivity of Non-oxido Vanadium Thiolate Complexes |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 釩 、含硫配位基 、反應活性 |
| 外文關鍵詞: | vanadium, thiolato ligands, reactivity |
| 相關次數: | 點閱:139 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬含硫配位之錯合物在生物體內有許多重要的功能,例如:電子傳遞蛋白或感應氧化還原。我實驗室合成、鑑定出以下幾種釩硫錯合物:[VIII(PS3”)(PS2”SH)]- (1) ([PS2”SH]2- = [P(C6H3-3-Me3Si-2-S)2(C6H3-3-Me3Si-2-SH)]2-), [VIV(PS3”)(PS2”SH)]- (2) ([PS3”]3- = [P(C6H3-3-Me3Si-2-S)3]3-)、[V(PS3”)2]- (3)、[V(PS3”)(PS2”SH)] (4)、[VIV(PS3”)2]2- (5)、{[V(PS3”)2]2H}- (6)、以及[VIV(PS3”)(PS1”circle)L] (7) (L = H2O or CH3CN)。
錯合物1可被氧氣氧化為錯合物2,並進一步氧化為錯合物3,在此過程中伴隨著未配位之硫醇鍵之去質子化並配位。錯合物3也可由錯合物2逐步與FePF6及n-BuLi不限順序反應而得。而錯合物1則需在酸性條件下,將錯合物2與CoCp2反應得到。值得一提的是此一將配位之硫質子化成無配位之硫醇的過程中需要酸與還原劑同時存在的情況下反應,暗示了錯合物金屬中心之還原伴隨著配位之硫質子化成無配位之硫醇的關聯。
錯合物3為一在五價釩-硫與四價釩-硫自由基兩種結構共振的形式下存在,其被發現可以透過proton-coupled electron transfer (PCET)的反應機構活化水分子中的氫氧鍵,並產生錯合物2,而此反應之化學動力學將在本篇論文中研究與討論。
將錯合物3與弱酸或是與錯合物4以1:1混合,皆會產生錯合物6,其被推測為錯合物3與錯合物4藉由以S…H…S橋接二聚化之錯合物,但我們能需要更多的證據來證明這個假設。錯合物6並不穩定並且會進一步發生分子內反應形成錯合物2及錯合物7作為產物。
Metal thiolates play many roles such as electron transfer proteins and redox sensors in organisms. Here we present a series of non-oxido vanadium thiolate complexes, [VIII(PS2”SH)2]- (1) ([PS2”SH]2- = [P(C6H3-3-Me3Si-2-S)2(C6H3-3-Me3Si-2-SH)]2-), [VIV(PS3”)(PS2”SH)]- (2) ([PS3”]3- = [P(C6H3-3-Me3Si-2-S)3]3-), [V(PS3”)2]- (3), [V(PS3”)(PS2”SH)] (4), [VIV(PS3”)2]2- (5), {[V(PS3”)2]2H}- (6), and [VIV(PS3”)(PS1”circle)L] (7) (L = H2O or CH3CN).
Complex 1 is oxidized to complex 2 then to complex 3 with dioxygen. Each one-electron oxidation process is accompanied with the deprotonation of unbound thiol to bound thiolate. Complex 3 is also produced from complex 2 through step-wise addition of FePF6/n-BuLi, or in the reverse order. The formation of 1 from 2 is achieved in the order of adding CoCp2 and acid or, as with the previous complex, inversely. Notably, the reduction of complex 2 to complex 1 accompanying the protonation of bound thiolate to unbound thiol only occurs with the presence of both CoCp2 and acid, indicating a cooperative effect between the metal-centered reduction and bound thiolate protonation.
Complex 3 is a resonance form of VV-thiolate and VIV-thiyl radical species and it is found to activate O-H bond in H2O to form complex 2 via proton-coupled electron transfer (PCET) mechanism, the kinetic studies of this reaction is ad-dressed.
While complex 3 reacting with weak acid, an intermediate (complex 6) is formed. Alternatively, the reaction of complex 3 with complex 4 also leads to the formation of complex 6. Complex 6 is proposed as a dimerized form of complex 3 and 4 with S…H…S acting as a bridge between two species. More evidences need to be collected to support this hypothesis. Complex 6 is a metastable species and it further proceeds an intramolecular reaction to form complex 2 and complex 7.
1. Huyer, G.; Liu, S.; Kelly, J.; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M. J.; Ramachandran, C., Mechanism of inhibition of protein-tyrosine phosphatases by Vanadate and Pervanadate. J. Biol. Chem. 1997, 272, 843-851.
2. Benabe, J. E.; Echegoyen, L. A.; Pastrana, B.; Martinez-Maldonado, M., Mechanism of inhibition of glycolysis by vanadate. J. Biol. Chem. 1987, 262, 9555-9560.
3. Rehder, D., Biological and medicinal aspects of vanadium. Inorg. Chem. Commun. 2003, 6, 604-617.
4. Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R., The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 1986, 322 (6077), 388-390.
5. Taylor, S. W.; Kammerer, B.; Bayer, E., New Perspectives in the Chemistry and Biochemistry of the Tunichromes and Related Compounds. Chem. Rev. 1997, 97, 333-346.
6. Michibata, H.; Yamaguchi, N.; Uyama, T.; Ueki, T., Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord. Chem. Rev. 2003, 237, 41-51.
7. Bruech, M.; Quintanilla, M. E.; Legrum, W.; Koch, J.; Netter, K. J.; Fuhrmann, G. F., Effects of vanadate on intracellular reduction equivalents in mouse liver and the fate of vanadium in plasma, erythrocytes and liver. Toxicology 1984, 31, 283-295.
8. Garner, C. D.; Armstrong, E. M.; Berry, R. E.; Beddoes, R. L.; Collison, D.; Cooney, J. J. A.; Ertok, S. N.; Helliwell, M., Investigations of Amavadin. J. Inorg. Biochem. 2000, 80, 17-20.
9. Berry, R. E.; Armstrong, E. M.; Beddoes, R. L.; Collison, D.; Ertok, S. N.; Helliwell, M.; Garner, C. D., The structure characterization of Amavadin. Angew. Chem. Int. Ed. 1999, 38, 795-797.
10. Bayer, E.; Kneifel, H., Isolation of Amavadin, a Vanadium Compound Occuring in Amanita Muscaria. Z. Naturforsch. B 1972, B 27, 207.
11. Domarus, M.; Kuznetsov, M. L.; Marcalo, J.; Pombeiro, A. J. L.; da Silva, J. A. L., Amavadin and Homologues as Mediators of Water Oxidation. Angew. Chem. Int. Ed. 2016, 55, 1489-1492.
12. Ueki, T.; Yamaguchi, N.; Romaidi; Isago, Y.; Tanahashi, H., Vanadium accumulation in ascidians: A system overview. Coord. Chem. Rev. 2015, 301, 300-308.
13. Lee, C. C.; Hu, Y.; Ribbe, M. W., Vanadium Nitrogenase Reduces CO. Science 2010, 329 (5992), 642-642.
14. Hu, Y.; Lee, C. C.; Ribbe, M. W., Vanadium nitrogenase: A two-hit wonder? Dalton Trans. 2012, 41 (4), 1118-1127.
15. Rees, J. A.; Bjornsson, R.; Schlesier, J.; Sippel, D.; Einsle, O.; DeBeer, S., The Fe–V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom. Angew. Chem. 2015, 127 (45), 13447-13450.
16. Rees, J. A.; Bjornsson, R.; Kowalska, J. K.; Lima, F. A.; Schlesier, J.; Sippel, D.; Weyhermuller, T.; Einsle, O.; Kovacs, J. A.; DeBeer, S., Comparative electronic structures of nitrogenase FeMoco and FeVco. Dalton Trans. 2017, 46 (8), 2445-2455.
17. Fay, A. W.; Blank, M. A.; Lee, C. C.; Hu, Y.; Hodgson, K. O.; Hedman, B.; Ribbe, M. W., Characterization of Isolated Nitrogenase FeVco. J. Am. Chem. Soc. 2010, 132 (36), 12612-12618.
18. Giles, N. M.; Giles, G. I.; Jacob, C., Multiple roles of cysteine in biocatalysis. Biochem. Biophys. Res. Commun. 2003, 300, 1-4.
19. Licht, S.; Gerfen, G. J.; Stubbe, J., Thiyl Radicals in Ribonucleotide Reductases. Science 1996, 271, 477-481.
20. Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y., Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer? Chem. Rev. 2003, 103, 2167-2202.
21. Fontecave, M.; Ollagnier-de-Choudens, S.; Mulliez, E., Biological Radical Sulfur Insertion Reactions. Chem. Rev. 2003, 103, 2149-2166.
22. Marr, A. C.; Spencer, D. J. E.; Schröder, M., Structural mimics for the active site of [NiFe] hydrogenase. Coord. Chem. Rev. 2001, 219-211, 1055-1074.
23. Kimura, S.; Bill, E.; Bothe, E.; Weyhermuller, T.; Wieghardt, K., Phenylthiyl Radical Complexes of Gallium(III), Iron(III), and Cobalt(III) and Comparison with Their Phenoxyl Analogues. J. Am. Chem. Soc. 2001, 123, 6025-6039.
24. Tripathi, G. N. R.; Sun, Q.; Armstrong, D. A.; Chipman, D. M.; Schuler, R. H., Resonance Raman spectra and structure of phenylthiyl radical. J. Phys. Chem. 1992, 96, 5344-5350.
25. Branscombe, N. D. J.; Atkins, A. J.; Marin-Becerra, A.; McInnes, E. J. L.; Mabbs, F. E.; McMaster, J.; Schroder, M., Ni(III) vs. Ni(II)-thiyl radical: charge-delocalisation in a binuclear Ni(III)Ni(II)-dithiolate complex. Chem. Commun. 2003, 1098-1099.
26. Stenson, P. A.; Board, A.; Marin-Becerra, A.; Blake, A. J.; Davies, E. S.; Wilson, C.; McMaster, J.; Schröder, M., Molecular and Electronic Structures of One-Electron Oxidized NiII–(Dithiosalicylidenediamine) Complexes: NiIII–Thiolate versus NiII–Thiyl Radical States. . Chem. Eur. J. 2008, 14, 2564-2576.
27. Grapperhaus, C. A.; Poturovic, S., Electrochemical Investigations of the [Tris(2-(diphenylphosphino)thiaphenolato)ruthenate(II)], Monoanion Reveal Metal- and Ligand-Centered Events: Radical, Reactivity, and Rate. Inorg. Chem. 2004, 43 3292-3298.
28. Das, U.; Ghorui, T.; Adhikari, B.; Roy, S.; Pramanik, S.; Pramanik, K., Iridium-mediated C–S bond activation and transformation: organoiridium(III) thioether, thiolato, sulfinato and thiyl radical compounds. Synthesis, mechanistic, spectral, electrochemical and theoretical aspects. Dalton Trans. 2015, 44, 8625–8639
29. Springs, J.; Janzen, C. P.; Darensbourg, M. Y.; Calabrese, J. C.; Krusic, P. J.; Verpeaux, J. N.; Amatore, C., Electron paramagnetic resonance and electrochemical study of the oxidation chemistry of mononuclear and binuclear chromium carbonyl thiolates. J. Am. Chem. Soc. 1990, 112, 5789-5797.
30. Warren, J. J.; Tronic, T. A.; Mayer, J. M., Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Chem. Rev. 2010, 110, 6961–7001.
31. Binstead, R. A.; Moyer, B. A.; Samuels, G. J.; Meyer, T. J., Proton-coupled electron transfer between [Ru(bpy)2(py)OH2]2+ and [Ru(bpy)2(py)O]2+. A solvent isotope effect (kH2O/kD2O) of 16.1. J. Am. Chem. Soc. 1981, 103, 2897-2899.
32. Costentin, C.; Evans, D. H.; Robert, M.; Save´ant, J.-M.; Singh, P. S., Electrochemical Approach to Concerted Proton and Electron Transfers. Reduction of the Water-Superoxide Ion Complex. J. Am. Chem. Soc. 2005, 127, 12490-12491.
33. Migliore, A.; Polizzi, N. F.; Therien, M. J.; Beratan, D. N., Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem. Rev. 2014, 114, 3381−3465.
34. Meunier, B.; de Visser, S. P.; Shaik, S., Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev. 2004, 104, 3947-3980.
35. Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H., The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Int. Ed. 2007, 46, 5284-5304.
36. Saito, K.; Rutherford, A. W.; Ishikita, H., Mechanism of proton-coupled quinone reduction in Photosystem II. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 954–959.
37. Olshansky, L.; Pizano, A. A.; Wei, Y.; Stubbe, J.; Nocera, D. G., Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase. J. Am. Chem. Soc. 2014, 136, 16210–16216.
38. Albers, A.; Demeshko, S.; Dechert, S.; Saouma, C. T.; Mayer, J. M.; Meyer, F., Fast Proton-Coupled Electron Transfer Observed for a High-Fidelity Structural and Functional [2Fe-2S] Rieske Model. J. Am. Chem. Soc. 2014, 136, 3946-3954.
39. Bergner, M.; Dechert, S.; Demeshko, S.; Kupper, C.; Mayer, J. M.; Meyer, F., Model of the MitoNEET [2Fe-2S] Cluster Shows Proton Coupled Electron Transfer. J. Am. Chem. Soc. 2017, 139, 701-707.
40. Chen, T.-T.; Chen, Y.-S.; Chang, Y.-H.; Wang, J.-C.; Tsai, Y.-F.; Lee, G.-H.; Kuo, T.-S.; Hsu, H.-F., Activation of dichloromethane by a V(III) thiolate complex: an example of S-based nucleophilic reactivity in an early transition metal thiolate. Chem. Commun. 2013, 49, 1109--1111
41. Chang, Y.-H.; Su, C.-L.; Wu, R.-R.; Liao, J.-H.; Liu, Y.-H.; Hsu, H.-F., An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V(V) - Thiolate and V(IV) - Thiyl Radical Forms. J. Am. Chem. Soc. 2011, 133, 5708–5711.
42. Galloni, P.; Conte, V.; Floris, B., A journey into the electrochemistry of vanadium compounds. Coord. Chem. Rev. 2015, 301, 240-299.
43. Block, E.; Ofori-Okai, G.; Zubieta, J., 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 1989, 111, 2327-2329.
44. Raamata, E.; Kaupmeesa, K.; Ovsjannikov, G.; Trummal, A.; Kütt, A.; Saame, J.; Koppel, I.; Kaljurand, I.; Lipping, L.; Rodima, T.; Pihl, V.; Koppel, I. A.; Leito, I., Acidities of strong neutral Brønsted acids in different media. J. Phys. Org. Chem. 2013, 26, 162-170.
45. Hsu, H.-F.; Su, C.-L.; Gopal, N. O.; Wu, C.-C.; Chu, W.-C.; Tsai, Y.-F.; Chang, Y.-H.; Liu, Y.-H.; Kuo, T.-S.; Ke, S.-C., Redox Chemistry in the Reaction of Oxovanadium(V) with Thiolate-Containing Ligands: the Isolation and Characterization of Non-Oxo Vanadium(IV) Complexes Containing Disulfide and Thioether Groups. Eur. J. Inorg. Chem. 2006, 2006, 1161–1167.
46. Paine, T. K.; Weyhermüller, T.; Slep, L. D.; Neese, F.; Bill, E.; Bothe, E.; Wieghardt, K.; Chaudhuri, P., Nonoxovanadium(IV) and Oxovanadium(V) Complexes with Mixed O, X, O-Donor Ligands (X = S, Se, P, or PO). Inorg. Chem. 2004, 43, 7324-7338.
47. Bedford, A. F.; Mortimer, C. T., Heats of formation and bond energies. Part II. Triethyl phosphate, triphenylphosphine, and triphenylphosphine oxide. J. Chem. Soc. 1960, (APR), 1622-1625.
48. Cornman, C. R.; Stauffer, T. C.; Boyle, P. D., Oxidation of a Vanadium(V)−Dithiolate Complex to a Vanadium(V)−η2,η2-Disulfenate Complex. J. Am. Chem. Soc. 1997, 119, 5986–5987.
49. Reger, D. L.; Little, C. A.; Lamba, J. J. S.; Brown, K. J.; Krumper, J. R.; Bergman, R. G.; Irwin, M.; Fackler Jr., J. P., Sodium Tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, Na[B(3,5-(CF3)3C6H3)4]. Inorg. Synth. 2004, 34, 5-8.
50. Wu, A.; Mader, E. A.; Datta, A.; Hrovat, D. A.; Borden, W. T.; Mayer, J. M., Nitroxyl Radical Plus Hydroxylamine Pseudo Self-Exchange Reactions: Tunneling in Hydrogen Atom Transfer. J. Am. Chem. Soc. 2009, 131, 11985-11997.
校內:2022-07-12公開