簡易檢索 / 詳目顯示

研究生: 石家銘
Shih, Chia-Ming
論文名稱: 以分子模版 poly(AMPS-co-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測
Electrochemical sensing of bilirubin via the carbon nanotube/imprinted poly(AMPS-co-EGDMA) composites
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 奈米碳管電化學感測膽紅素分子模版高分子
外文關鍵詞: carbon nanotube, bilirubin, molecularly imprinted polymer
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膽紅素為血紅蛋白降解之產物,人體內部血紅素的含量可以用於判定肝臟的功能是否正常,以及作為肝臟疾病如肝炎、肝硬化等之指標,亦能針對部分可能對肝臟產生危害的藥物副作用進行檢測。本實驗旨在利用分子模版高分子之技術,發展對膽紅素分子具特異性吸附之高分子薄膜,並同時利用電化學感測的方式來偵測膽紅素的濃度。

    分子模版高分子 (molecularly imprinted polymer, MIP) 的模印技術為藉由在高分子聚合過程中添加模版分子 (template),並於聚合完成後將模版分子自高分子結構中移除,而留下對目標分子形狀具記憶性、同時擁有特殊親和力的辨識性孔洞。在模版高分子的材料的選用上,以 AMPS (2-acrylamido-2-methylpropane-sulfonic acid) 為單體, 搭配交聯劑 EGDMA (ethylene glycol dimethylacrylate) 與模版分子膽紅素進行自由基加成聚合反應,形成模印膽紅素之高分子 poly(AMPS-co-EGDMA),之後經由萃洗的步驟移除膽紅素。本研究探討多項影響模印效果之變因,如聚合液體積、溫度及不同材料之應用。並利用 SEM (scanning electron
    microscopy) 及 AFM (atomic force microscopy) 等儀器分析 MIP 與 NIP (non-imprinted polymer) 薄膜之表面構形,探討其對感測訊號及模印效果造成之影響。

    於電化學感測過程中亦比較膽紅素於 MIP/Au 電極與 MIP/CNT
    (carbon nanotube) /Au 電極之間的靈敏度差異,而研究數據證實膽紅素的感測訊號可藉由奈米碳管而提升至原有大小之四倍左右。而以循環伏安法分別對 CNT/Au 電極與 MIP/CNT/Au 電極進行膽紅素的分析顯示,經過 MIP 修飾之電極表面能有效提升膽紅素之靈敏度。

    依據不同的感測方式,電極對膽紅素之靈敏度亦不同。以單片電極對單一濃度之膽紅素進行感測能有效的提高電極對膽紅素之靈敏度,同時其電流-濃度檢量線亦呈現較好的線性範圍。總結來說,本研究製備之MIP 電極與 NIP 電極靈敏度比較可得約 5.5 之模印效果,單片電極之靈敏度可達 12.417 (μA/cm2)/(mg/dL)。而 MIP 電極於膽紅素與膽綠素間之選擇性約為 2.65。研究數據證實以 MIP/CNT/Au 對膽紅素進行電化學反應具可行性。

    Electrochemical sensing of bilirubin incorporated with molecular imprinting technology was investigated in this work. 2-Acrylamido-2-methylpropane-sulfonic acid (AMPS) and ethylene glycol dimethyl- acrylate (EGDMA) were used as the functional monomer and the crosslinker, respectively, for the synthesis of the bilirubin imprinted polymers. Carbon nanotubes (CNT) were coated onto the Au electrode prior to the fabrication of the imprinted polymer film. In the first stage, AIBN (2,2-Azobisisobutyronitrile) was used as the initiator for the polymerization by AMPS monomers. Afterwards, the partially polymerized solution was mixed with EGDMA and AIBN to accomplish the final polymerization. After the completion of polymerization, the imprinted fabricated sensing electrode was immersed in 0.01 M NaOH solution for the extraction of bilirubin templates.

    Upon the presence of bilirubin to the imprinted CNT/poly(AMPS-co-EGDMA)/Au electrode, bilirubin could bind to the MIP (molecularly imprinted polymer) matrix and caused a corresponding current. The electrons released from the oxidation of bilirubin were transferred to cause the electron conducting effect. Different factors affecting the sensing as well as imprinting effects were investigated. The results indicated that the polymerization
    temperature and the amount of pre-polymerization solution were essential to the imprinting performance. The MIP/Au electrode and MIP/CNT/Au electrode were also compared. The current signals detected from MIP/CNT/Au electrode were enhanced about 4 folds compared to the MIP/Au electrode without CNTs. The addition of CNTs was confirmed to achieve
    good improvement on the scale of the currents. Observation of the surface morphology from the SEM and AFM photos was also aided to the comparison and evaluation of the sensing and imprinting effects.

    In summary, by this electrode fabricating method an imprinted factor of 5.534 could be achieved. The detection sensitivity of as high as 12.417 (μA/cm2)/(mg/dL) could be reached. The selectivity of bilirubin against biliverdin was 2.652. Therefore, the feasibility of the electrochemical detection of bilirubin via the imprinted CNT/ poly(AMPS-co-EGDMA)/ Au electrode was confirmed.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 致謝…………………………………………………………………III 目錄…………………………………………………………………IV 表目錄………………………………………………………………VII 圖目錄………………………………………………………………VIII 第一章 緒論………………………………………………………1 1-1 生物化學感測器………………………………………………1 1-2 訊號轉換系統…………………………………………………3 1-2-1 光學式感測器……………………………………………3 1-2-2 質量式感測器……………………………………………4 1-2-3 熱學感測器………………………………………………4 1-2-4 電化學感測器……………………………………………5 1-2-4-1 電導式感測…………………………………………5 1-2-4-2 電位式感測…………………………………………5 1-2-4-3 伏特安培式感測……………………………………6 1-2-4-4 電流式感測…………………………………………6 1-2-4-5 離子感測場效電晶體感測…………………………7 1-3 生物感測元件…………………………………………………7 1-3-1 酵素………………………………………………………7 1-3-2 抗體-抗原 ………………………………………………8 1-3-3 細胞、微生物、胞器與動植物組織……………………8 1-3-4 DNA ………………………………………………………8 1-4 分子模版高分子………………………………………………9 1-4-1 歷史回顧…………………………………………………9 1-4-2 原理簡介…………………………………………………10 1-4-3 製備流程…………………………………………………11 1-4-3-1 非共價模印…………………………………………11 1-4-3-2 共價模印……………………………………………11 1-4-3-3 半共價模印…………………………………………13 1-4-4 分子模版的組成…………………………………………13 1-4-4-1 功能性單體…………………………………………13 1-4-4-2 交聯劑………………………………………………13 1-4-4-3 溶劑…………………………………………………14 1-5 膽紅素…………………………………………………………15 1-5-1 代謝流程…………………………………………………15 1-5-2 黃疸症狀…………………………………………………16 1-5-3 膽紅素的一般量測………………………………………17 1-5-4 膽紅素的電化學機制……………………………………18 1-6 奈米碳管………………………………………………………18 1-7 研究動機………………………………………………………20 第二章 實驗方法與材料…………………………………………21 2-1 膽紅素濃度的測定……………………………………………21 2-1-1 試劑調配…………………………………………………21 2-1-2 操作步驟…………………………………………………21 2-2 分子模版高分子層修飾於電極之製備流程…………………23 2-2-1 氧化鋁版的濺鍍…………………………………………24 2-2-2 膽紅素 MIP 電極製備 …………………………………24 2-2-3 膽紅素 MIP 及 NIP 電極的萃洗………………………26 2-3 分子模版高分子的電化學分析………………………………26 2-3-1 以循環伏安法分析膽紅素溶液…………………………27 2-3-2 定電位 I-t 曲線圖 ……………………………………27 2-3-3 選擇性測試與血清測試…………………………………28 2-3-4 感測片之重複使用性測試………………………………28 2-4 感測片的表面分析……………………………………………28 2-5 實驗藥品目錄…………………………………………………29 2-6 實驗儀器目錄…………………………………………………30 第三章 結果與討論………………………………………………31 3-1 模版高分子材料探討…………………………………………31 3-2 MIP 電極的性質分析…………………………………………34 3-2-1 SEM 之表面觀察 ………………………………………34 3-2-2 AFM 之表面分析 ………………………………………37 3-2-3 FT-IR 圖譜分析 ………………………………………42 3-3 膽紅素之電化學感測…………………………………………43 3-3-1 聚合溫度對 MIP 之影響 ………………………………43 3-3-2 聚合液體積對 MIP 之影響 ……………………………45 3-3-3 CNT 造成的效應探討 …………………………………47 3-4 MIP 感測電極的效能探討……………………………………50 3-4-1 分子模版高分子效應探討………………………………50 3-4-2 電化學感測之可逆性之測試……………………………54 3-4-3 電極重複使用性之測試…………………………………55 3-4-4 添加濃度隨機變化之測試………………………………56 3-4-5 單片電極單一濃度之測試………………………………56 3-5 選擇性、血清測試與其他材料比較…………………………63 3-5-1 選擇性測試………………………………………………63 3-5-2 血清測試…………………………………………………64 3-5-3 其他材料之比較…………………………………………64 第四章 結論……………………………………………………… 70 參考文獻……………………………………………………………72

    [1] J. Wang, Amperometric biosensors for clinical and
    therapeutic drug monitoring: a review, J. Pharm.
    Biomed. Anal, 19, 47-53, 1999
    [2] J. Bobacka, A. Ivaska and A. Lewenstam, Potentiometric
    Ion Sensors Based on Conducting Polymers, 15, 366-374,
    2002
    [3] T. Ahuja, I. A. Mir, D. Kumar and Rajesh, Biomolecular
    immobilization on conducting polymers for biosensing
    applications, Biomaterials, 28, 791-805, 2007
    [4] L. D. Mello and L. T. Kubota, Review of the use of
    biosensor as analytical tools in the food and drink
    industries, Food Chemistry, 77, 237-256, 2002
    [5] M. A. Cooper, Optical biosensor: where next and how
    soon? , Drug Discovery Today, 11, 1061-1067, 2006
    [6] V. M. Mecea, Is quartz crystal microbalance really a
    mass sensor? , Sensors and Actuators A, 128, 270-277,
    2006
    [7] M. Gerard, A. Chaubey and B. D. Malhotra, Application
    of conducting polymer to biosensors, Biosensors &
    Bioelectronics, 17, 345-359, 2002
    [8] B. Xie, M. Khayyami and T. Nwosu, Ferrocene-mediated
    Thermal Biosensor, ANALYST, Vol. 118, 845-848, 1993
    [9] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-
    Ordieres and P. Tunon-Blanco, Electrochemical sensors
    based on molecularly imprinted polymers, Trends on
    Analytical Chemistry, Vol. 23, No. 1, 2004
    [10] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K.
    Yano and I. Karube, Atrazine sensing by molecularly
    imprinted membranes, Biosensors & Bioelectronics, 10,
    959-964, 1995
    [11] T. A. Sergeyeva, S. A. Piletsky, A. A. Brovka, E. A.
    Slinchenko, L. M. Sergeeva and A. V. El’skaya,
    Selective recognition of atrazine by molecularly
    imprinted membranes. Development on conductometric
    sensor for herbicides detection, Analytica Chimica
    Acta, 392, 105-111, 1999
    [12] E. Bakker, D. Diamond, A.j Lewen and E. Pretsch, Ion
    sensors: current limits and new trends, Analytica
    Chimica Acta, 393, 11-18, 1999
    [13] C. Krantz-Rulcker, M. Stenberg, F. Winquist and I.
    Lundstrom, Electronic tongues for environmental
    monitoring based on sensor arrays and pattern
    recognition: a review, Analytica Chimica Acta, 426,
    217-226, 2001
    [14] J. R. Stetter and J. Li, Amperometric Gas Sensors –
    A review, Chemical Reviews, 108, 352-366, 2008
    [15] B. Palan, F. V. Santos, J. M. Karam and B. Courtois,
    M. Husak, New ISFET sensor interface circuit for
    biomedical applications, Sensors and Actuators B, 57,
    63-68, 1999
    [16] J. Davis, D. H. Vaughan and M. F. Cardosi, Elements
    of biosensor construction, Enzyme Micro. Technol.,
    Vol. 17, 1030-1035, 1995
    [17] N. A. Campbell and J. B. Reece, Biology, sixth
    edition, Benjamin cummings, 2001
    [18] 林志生、蔡明蒔、潘俊旭、孫玉苓、王瑞萍、黃元平、張豐
    鵬, 微奈米生物感測系統專利地圖及分析, 國家實驗研究院科
    技政策研究與資訊中心, 2005
    [19] M. Yan and O. Ranstrom, Molecularly imprinted
    Materials: Science and technology, J. Am. Chem. Soc.,
    127, 14117-14120, 2005
    [20] B. Sellergren and C. J. Allender, Molecularly
    imprinted polymers: A bridge to advanced drug
    delivery, Advanced Drug Delivery Reviews, 57, 1733-
    1741, 2005
    [21] 邱琮傑, 以分子模版材料製備之電極進行對膽紅素感測之探
    討, 國立成功大學化工系碩士論文, 2006
    [22] S. A. Piletsky, T. L. Panasyuk, E.V. Piletskaya, I.
    A. Nicholls and M. Ulbricht, Receptor and transport
    properties of imprinted polymer membranes - A review,
    Journal of Membrane Science, 157, 263-278, 1999
    [23] 楊竣翔, 以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之 電
    子/質子傳導方式進行對膽紅素之電化學感測, 國立成功大學
    化工系碩士論文, 2007
    [24] E. Caro, R. M. Marce, F. Borrull, P.A.G. Cormack and
    D. C. Sherrington, Applications of molecularly
    imprinted polymers to solid-phase extraction of
    compounds from environmental and biological samples,
    Trends in Analytical Chemistry, Vol. 25, NO. 2, 143-
    154, 2006
    [25] X. Shi, A. Wu, G. Qu, R. Li and D. Zhang, Development
    and characterisation of molecularly imprinted
    polymers based on methacrylic acid for selective
    recognition of drugs, Biomaterials, 28, 3741-3749,
    2007
    [26] E. Caro, N. Masque, R. M. Marce, F. Borrull, P. A.G.
    Cormack and D. C. Sherrington, Non-covalent and semi-
    covalent molecularly imprinted polymers for selective
    on-line solid-phase extraction of 4-nitrophenol from
    water samples, J. Chromatogr A, 963, 169-178, 2002
    [27] E. L. Holthoff and F. V. Bright, Molecularly
    templated materials in chemical sensing, Analytica
    Chimica Acta, 594, 147-161, 2007
    [28] A. G. Mayes and M. J. Whitcombe, Synthetic strategies
    for the generation of molecularly imprinted organic
    polymers, Advanced Drug Delivery Reviews, 57, 1742-
    1778, 2005
    [29] M. J. Syu, T. C. Chiu, C. Y. Lai, Y. S. Chang,
    Amperometric detection of bilirubin from a micro-
    sensing electrode with a synthetic bilirubin
    imprinted poly(MAA-co-EGDMA) film, Biosensors &
    Bioelectronics, 22, 550-557, 2006
    [30] P. Andrea, S. Miroslav, S. Silvia and M Stanislav, A
    solid binding matrix/molecularly imprinted polymer-
    based sensor system for the determination of
    clenbuterol in bovine liver using differential-plus
    voltammetry, Sensors and Actuators B, 76, 286-294,
    2001
    [31] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J.
    Miranda-Ordieres and P. Tunon-Blanco, Voltammetric
    sensors for vanillylmandelic acid based on
    molecularly imprinted polymer-modified electrode,
    Biosensors and Bioelectronics, 18, 353-362, 2003
    [32] T. Panasyuk-Delaney, V. M. Mirsky and O. S. Wolfbeis,
    Capacitive Creatinine Sensors Based on Photografted
    Molecularly imprinted polymer, Electroanalysis, 14,
    NO. 3, 221-224, 2002
    [33] M. Sibrian-Vazquez and D. A. Spivak, Molecular
    imprinting made easy, J. AM. CHEM. SOC., 126, 7827-
    7833, 2004
    [34] T. Dorner, B. Knipp and D. A. Lightner, Heteronuclear
    NOE analysis of bilirubin solution conformation and
    intramolecular hydrogen bonding, Tetrahedron, Vol.
    53, No. 8, 2697-2716, 1997
    [35] H. Mincey and G. Gonzaba, End Tidal Carbon Monoxide:
    A New Method to Detect Hypebilirubinemia in Newborns,
    Newborn & Infant Nursing Reviews, Vol. 7, 123-128,
    2007
    [36] Bilirubin production and excretion,
    http://calvin.linfield.edu/~ jkeyes /phys/Bilirubin%
    20Booklet.pdf
    [37] 邱千芳、蘇世斌、林勤益, 臨床上常見的無症狀高膽紅素血
    症--吉爾伯特症狀群, 基層醫學, vol. 21, No. 4, 81-85,
    2006
    [38] L. Gilmore and C. J. Garvey, Investigation of
    Jaundice, Medicine, Vol. 30, 11-13, 2002
    [39] C. E. Ahlfors, Measurement of Plasma Unbound
    Unconjugated Bilirubin, Analytical Biochemistry, 279,
    130-135, 2000
    [40] X. Li and Z. Rosenzweig, A fiber optical sensor for
    rapid analysis of bilirubin in serum, Analytica
    Chimica Acta, 353, 263-273, 1997
    [41] F. Moussa, G. Kanoute, C. Herrenknecht, P. Levillain
    and F. Trivin, Electrochemical Oxidation of Bilirubin
    and Biliverdin in Dimethyl Sulfoxide, Anal. Chem.,
    60, 1179-1185, 1988
    [42] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj and M.
    Nath, Nanotubes, CHEMPHYSCHEM, 2, 78-105, 2001
    [43] N. Sinha and J. T.-W. Yeow, Carbon Nanotubes for
    Biomedical Applications, IEEE TRANSACTIONS ON
    NANOBIOSCIENCE, Vol. 4, No. 2, 2005
    [44] P. Avouris, J. Appenzeller, R. Martel and S. J. Wind,
    Carbon Nanotubes Electronics, Proceedings of the
    IEEE, Vol. 91, No. 11, 2003

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE