| 研究生: |
石家銘 Shih, Chia-Ming |
|---|---|
| 論文名稱: |
以分子模版 poly(AMPS-co-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測 Electrochemical sensing of bilirubin via the carbon nanotube/imprinted poly(AMPS-co-EGDMA) composites |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 奈米碳管 、電化學感測 、膽紅素 、分子模版高分子 |
| 外文關鍵詞: | carbon nanotube, bilirubin, molecularly imprinted polymer |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膽紅素為血紅蛋白降解之產物,人體內部血紅素的含量可以用於判定肝臟的功能是否正常,以及作為肝臟疾病如肝炎、肝硬化等之指標,亦能針對部分可能對肝臟產生危害的藥物副作用進行檢測。本實驗旨在利用分子模版高分子之技術,發展對膽紅素分子具特異性吸附之高分子薄膜,並同時利用電化學感測的方式來偵測膽紅素的濃度。
分子模版高分子 (molecularly imprinted polymer, MIP) 的模印技術為藉由在高分子聚合過程中添加模版分子 (template),並於聚合完成後將模版分子自高分子結構中移除,而留下對目標分子形狀具記憶性、同時擁有特殊親和力的辨識性孔洞。在模版高分子的材料的選用上,以 AMPS (2-acrylamido-2-methylpropane-sulfonic acid) 為單體, 搭配交聯劑 EGDMA (ethylene glycol dimethylacrylate) 與模版分子膽紅素進行自由基加成聚合反應,形成模印膽紅素之高分子 poly(AMPS-co-EGDMA),之後經由萃洗的步驟移除膽紅素。本研究探討多項影響模印效果之變因,如聚合液體積、溫度及不同材料之應用。並利用 SEM (scanning electron
microscopy) 及 AFM (atomic force microscopy) 等儀器分析 MIP 與 NIP (non-imprinted polymer) 薄膜之表面構形,探討其對感測訊號及模印效果造成之影響。
於電化學感測過程中亦比較膽紅素於 MIP/Au 電極與 MIP/CNT
(carbon nanotube) /Au 電極之間的靈敏度差異,而研究數據證實膽紅素的感測訊號可藉由奈米碳管而提升至原有大小之四倍左右。而以循環伏安法分別對 CNT/Au 電極與 MIP/CNT/Au 電極進行膽紅素的分析顯示,經過 MIP 修飾之電極表面能有效提升膽紅素之靈敏度。
依據不同的感測方式,電極對膽紅素之靈敏度亦不同。以單片電極對單一濃度之膽紅素進行感測能有效的提高電極對膽紅素之靈敏度,同時其電流-濃度檢量線亦呈現較好的線性範圍。總結來說,本研究製備之MIP 電極與 NIP 電極靈敏度比較可得約 5.5 之模印效果,單片電極之靈敏度可達 12.417 (μA/cm2)/(mg/dL)。而 MIP 電極於膽紅素與膽綠素間之選擇性約為 2.65。研究數據證實以 MIP/CNT/Au 對膽紅素進行電化學反應具可行性。
Electrochemical sensing of bilirubin incorporated with molecular imprinting technology was investigated in this work. 2-Acrylamido-2-methylpropane-sulfonic acid (AMPS) and ethylene glycol dimethyl- acrylate (EGDMA) were used as the functional monomer and the crosslinker, respectively, for the synthesis of the bilirubin imprinted polymers. Carbon nanotubes (CNT) were coated onto the Au electrode prior to the fabrication of the imprinted polymer film. In the first stage, AIBN (2,2-Azobisisobutyronitrile) was used as the initiator for the polymerization by AMPS monomers. Afterwards, the partially polymerized solution was mixed with EGDMA and AIBN to accomplish the final polymerization. After the completion of polymerization, the imprinted fabricated sensing electrode was immersed in 0.01 M NaOH solution for the extraction of bilirubin templates.
Upon the presence of bilirubin to the imprinted CNT/poly(AMPS-co-EGDMA)/Au electrode, bilirubin could bind to the MIP (molecularly imprinted polymer) matrix and caused a corresponding current. The electrons released from the oxidation of bilirubin were transferred to cause the electron conducting effect. Different factors affecting the sensing as well as imprinting effects were investigated. The results indicated that the polymerization
temperature and the amount of pre-polymerization solution were essential to the imprinting performance. The MIP/Au electrode and MIP/CNT/Au electrode were also compared. The current signals detected from MIP/CNT/Au electrode were enhanced about 4 folds compared to the MIP/Au electrode without CNTs. The addition of CNTs was confirmed to achieve
good improvement on the scale of the currents. Observation of the surface morphology from the SEM and AFM photos was also aided to the comparison and evaluation of the sensing and imprinting effects.
In summary, by this electrode fabricating method an imprinted factor of 5.534 could be achieved. The detection sensitivity of as high as 12.417 (μA/cm2)/(mg/dL) could be reached. The selectivity of bilirubin against biliverdin was 2.652. Therefore, the feasibility of the electrochemical detection of bilirubin via the imprinted CNT/ poly(AMPS-co-EGDMA)/ Au electrode was confirmed.
[1] J. Wang, Amperometric biosensors for clinical and
therapeutic drug monitoring: a review, J. Pharm.
Biomed. Anal, 19, 47-53, 1999
[2] J. Bobacka, A. Ivaska and A. Lewenstam, Potentiometric
Ion Sensors Based on Conducting Polymers, 15, 366-374,
2002
[3] T. Ahuja, I. A. Mir, D. Kumar and Rajesh, Biomolecular
immobilization on conducting polymers for biosensing
applications, Biomaterials, 28, 791-805, 2007
[4] L. D. Mello and L. T. Kubota, Review of the use of
biosensor as analytical tools in the food and drink
industries, Food Chemistry, 77, 237-256, 2002
[5] M. A. Cooper, Optical biosensor: where next and how
soon? , Drug Discovery Today, 11, 1061-1067, 2006
[6] V. M. Mecea, Is quartz crystal microbalance really a
mass sensor? , Sensors and Actuators A, 128, 270-277,
2006
[7] M. Gerard, A. Chaubey and B. D. Malhotra, Application
of conducting polymer to biosensors, Biosensors &
Bioelectronics, 17, 345-359, 2002
[8] B. Xie, M. Khayyami and T. Nwosu, Ferrocene-mediated
Thermal Biosensor, ANALYST, Vol. 118, 845-848, 1993
[9] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-
Ordieres and P. Tunon-Blanco, Electrochemical sensors
based on molecularly imprinted polymers, Trends on
Analytical Chemistry, Vol. 23, No. 1, 2004
[10] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K.
Yano and I. Karube, Atrazine sensing by molecularly
imprinted membranes, Biosensors & Bioelectronics, 10,
959-964, 1995
[11] T. A. Sergeyeva, S. A. Piletsky, A. A. Brovka, E. A.
Slinchenko, L. M. Sergeeva and A. V. El’skaya,
Selective recognition of atrazine by molecularly
imprinted membranes. Development on conductometric
sensor for herbicides detection, Analytica Chimica
Acta, 392, 105-111, 1999
[12] E. Bakker, D. Diamond, A.j Lewen and E. Pretsch, Ion
sensors: current limits and new trends, Analytica
Chimica Acta, 393, 11-18, 1999
[13] C. Krantz-Rulcker, M. Stenberg, F. Winquist and I.
Lundstrom, Electronic tongues for environmental
monitoring based on sensor arrays and pattern
recognition: a review, Analytica Chimica Acta, 426,
217-226, 2001
[14] J. R. Stetter and J. Li, Amperometric Gas Sensors –
A review, Chemical Reviews, 108, 352-366, 2008
[15] B. Palan, F. V. Santos, J. M. Karam and B. Courtois,
M. Husak, New ISFET sensor interface circuit for
biomedical applications, Sensors and Actuators B, 57,
63-68, 1999
[16] J. Davis, D. H. Vaughan and M. F. Cardosi, Elements
of biosensor construction, Enzyme Micro. Technol.,
Vol. 17, 1030-1035, 1995
[17] N. A. Campbell and J. B. Reece, Biology, sixth
edition, Benjamin cummings, 2001
[18] 林志生、蔡明蒔、潘俊旭、孫玉苓、王瑞萍、黃元平、張豐
鵬, 微奈米生物感測系統專利地圖及分析, 國家實驗研究院科
技政策研究與資訊中心, 2005
[19] M. Yan and O. Ranstrom, Molecularly imprinted
Materials: Science and technology, J. Am. Chem. Soc.,
127, 14117-14120, 2005
[20] B. Sellergren and C. J. Allender, Molecularly
imprinted polymers: A bridge to advanced drug
delivery, Advanced Drug Delivery Reviews, 57, 1733-
1741, 2005
[21] 邱琮傑, 以分子模版材料製備之電極進行對膽紅素感測之探
討, 國立成功大學化工系碩士論文, 2006
[22] S. A. Piletsky, T. L. Panasyuk, E.V. Piletskaya, I.
A. Nicholls and M. Ulbricht, Receptor and transport
properties of imprinted polymer membranes - A review,
Journal of Membrane Science, 157, 263-278, 1999
[23] 楊竣翔, 以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之 電
子/質子傳導方式進行對膽紅素之電化學感測, 國立成功大學
化工系碩士論文, 2007
[24] E. Caro, R. M. Marce, F. Borrull, P.A.G. Cormack and
D. C. Sherrington, Applications of molecularly
imprinted polymers to solid-phase extraction of
compounds from environmental and biological samples,
Trends in Analytical Chemistry, Vol. 25, NO. 2, 143-
154, 2006
[25] X. Shi, A. Wu, G. Qu, R. Li and D. Zhang, Development
and characterisation of molecularly imprinted
polymers based on methacrylic acid for selective
recognition of drugs, Biomaterials, 28, 3741-3749,
2007
[26] E. Caro, N. Masque, R. M. Marce, F. Borrull, P. A.G.
Cormack and D. C. Sherrington, Non-covalent and semi-
covalent molecularly imprinted polymers for selective
on-line solid-phase extraction of 4-nitrophenol from
water samples, J. Chromatogr A, 963, 169-178, 2002
[27] E. L. Holthoff and F. V. Bright, Molecularly
templated materials in chemical sensing, Analytica
Chimica Acta, 594, 147-161, 2007
[28] A. G. Mayes and M. J. Whitcombe, Synthetic strategies
for the generation of molecularly imprinted organic
polymers, Advanced Drug Delivery Reviews, 57, 1742-
1778, 2005
[29] M. J. Syu, T. C. Chiu, C. Y. Lai, Y. S. Chang,
Amperometric detection of bilirubin from a micro-
sensing electrode with a synthetic bilirubin
imprinted poly(MAA-co-EGDMA) film, Biosensors &
Bioelectronics, 22, 550-557, 2006
[30] P. Andrea, S. Miroslav, S. Silvia and M Stanislav, A
solid binding matrix/molecularly imprinted polymer-
based sensor system for the determination of
clenbuterol in bovine liver using differential-plus
voltammetry, Sensors and Actuators B, 76, 286-294,
2001
[31] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J.
Miranda-Ordieres and P. Tunon-Blanco, Voltammetric
sensors for vanillylmandelic acid based on
molecularly imprinted polymer-modified electrode,
Biosensors and Bioelectronics, 18, 353-362, 2003
[32] T. Panasyuk-Delaney, V. M. Mirsky and O. S. Wolfbeis,
Capacitive Creatinine Sensors Based on Photografted
Molecularly imprinted polymer, Electroanalysis, 14,
NO. 3, 221-224, 2002
[33] M. Sibrian-Vazquez and D. A. Spivak, Molecular
imprinting made easy, J. AM. CHEM. SOC., 126, 7827-
7833, 2004
[34] T. Dorner, B. Knipp and D. A. Lightner, Heteronuclear
NOE analysis of bilirubin solution conformation and
intramolecular hydrogen bonding, Tetrahedron, Vol.
53, No. 8, 2697-2716, 1997
[35] H. Mincey and G. Gonzaba, End Tidal Carbon Monoxide:
A New Method to Detect Hypebilirubinemia in Newborns,
Newborn & Infant Nursing Reviews, Vol. 7, 123-128,
2007
[36] Bilirubin production and excretion,
http://calvin.linfield.edu/~ jkeyes /phys/Bilirubin%
20Booklet.pdf
[37] 邱千芳、蘇世斌、林勤益, 臨床上常見的無症狀高膽紅素血
症--吉爾伯特症狀群, 基層醫學, vol. 21, No. 4, 81-85,
2006
[38] L. Gilmore and C. J. Garvey, Investigation of
Jaundice, Medicine, Vol. 30, 11-13, 2002
[39] C. E. Ahlfors, Measurement of Plasma Unbound
Unconjugated Bilirubin, Analytical Biochemistry, 279,
130-135, 2000
[40] X. Li and Z. Rosenzweig, A fiber optical sensor for
rapid analysis of bilirubin in serum, Analytica
Chimica Acta, 353, 263-273, 1997
[41] F. Moussa, G. Kanoute, C. Herrenknecht, P. Levillain
and F. Trivin, Electrochemical Oxidation of Bilirubin
and Biliverdin in Dimethyl Sulfoxide, Anal. Chem.,
60, 1179-1185, 1988
[42] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj and M.
Nath, Nanotubes, CHEMPHYSCHEM, 2, 78-105, 2001
[43] N. Sinha and J. T.-W. Yeow, Carbon Nanotubes for
Biomedical Applications, IEEE TRANSACTIONS ON
NANOBIOSCIENCE, Vol. 4, No. 2, 2005
[44] P. Avouris, J. Appenzeller, R. Martel and S. J. Wind,
Carbon Nanotubes Electronics, Proceedings of the
IEEE, Vol. 91, No. 11, 2003
校內:2027-06-01公開