簡易檢索 / 詳目顯示

研究生: 高嘉朗
Kao, Chia-Lang
論文名稱: 混摻方式對氧化鋁/聚碳酸酯複材機械強度之影響
Influence of blending methods on mechanical properties of alumina/polycarbonate composites.
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 91
中文關鍵詞: 水鋁礦聚碳酸酯氧化鋁晶型混摻矽烷耦合劑
外文關鍵詞: blend, sol-gel, silane coupling agent, alumina, morphology, boehmite
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試以sol-gel方式製備水鋁礦(boehmite)批覆於alpha/theta晶型的氧化鋁(Alumina, Al2O3)表面,希望可藉由boehmite表面與矽烷耦合劑Methacryloxypropyltrimethoxysilane (MPS)的良好反應性,改善alpha/theta晶型氧化鋁之表面反應性。

    另一研究為以矽烷耦合劑methoxysilane(MPS)對奈米級的氧化鋁粒子進行表面改質後,分別將氧化鋁與聚碳酸酯(bisphenol-A polycarbonate, PC)以熔融混鍊與溶液混摻方式進行混摻,進而研究比較不同混摻方式對之複材機械強度的影響。

    TEM 結果顯示,本研究使用之sol-gel 實驗條件無法使氧化鋁alpha/theta晶型氧化鋁表面批覆boehmite。

    由FT-IR與TEM結果顯示,MPS可成功改質奈米級gamma Al2O3之表面。由DSC結果顯示,水氣應會對溶液混掺之氧化鋁/PC複材的結晶造成影響。TGA結果顯示,不論熔融混鍊或是溶液混摻之氧化鋁/PC複材,Td(熱裂解5wt%之溫度)均隨氧化鋁添加量增加而下降,且改質後氧化鋁/PC複材的耐熱性均較改質前佳。以熔融混鍊之未改質氧化鋁/PC複材之耐熱性最差。以溶液混掺之氧化鋁/PC複材的韌性較熔融混掺複材佳。

    In this research, we attempted to coat boehmite particles on surface of alpha/thata-Al2O3 particles by sol-gel route to improve surface reactivity of alpha/theta-Al2O3.

    we also used nanoscale gamma-Al2O3 particles to react with Methacryloxypropyltrimethoxysilane(MPS).Surface-modified -Al2O3 particles were then blended with bisphenol-A polycarbonate(PC) by diffedent blending methods to prepare Al2O3/PC composites.In an tempt to study the influences of
    different blending methods on mechanical properties of alumina/PC composite.

    TEM results showed that alpha/theta-Al2O3 particles does not coat with boehmite particles by sol-gel method in this study.

    The FT-IR and TEM results showed that gamma-Al2O3 could react with MPS successfully. DSC results showed that the moisture would cause crystallization of PC in solution-blending Al2O3/PC composite. TGA results showed that theramal degradation temperatures of both melt-blending and
    solution-blending Al2O3/PC composites decreased with increasing Al2O3 contents. Tensile testing results showed that the toughness of Al2O3/PC composites prepared by solution-blending method was better than by melt-blenging method.

    目錄 中文摘要……………………………………………… i Abstract…………………………………………… ii 致謝………………… ………………………………. iii 目錄……… ………………………………………… iv 表目錄……… ……………………………………… vi 圖目錄………………………………………………… vii 一、前言…………………………………………… 1 二、簡介…………………………………………… 2 三、文獻回顧……………………………………… 3 3-1 聚碳酸酯概論………………………………… 3 3-2 氧化鋁簡介………………………………… 4 3-3 -Al2O3的性質…………………………………………... 4 3-4 boehmite 之性質…………………………………………. 5 3-5 以sol-gel 法改質材料表面. …………………………….. 7 3-6 -Al2O3的表面性質……………………………………... 8 3-7 矽烷耦合劑……………………………………………… 9 3-7-1 矽烷耦合劑與氧化鋁反應原理………………... 9 3-7-2 矽烷耦合劑的選用……………………………... 9 3-7-3 MPS 的水解及縮合特性……………………….. 10 3-8 以矽烷耦合劑改質Al2O3之應用……………………….. 11 四、實驗…………………………………………………… 21 4-1 實驗藥品………………………………………………… 21 4-2 實驗儀器………………………………………………… 22 4-3 實驗步驟………………………………………………… 24 4-3-1 以sol-gel 法製備boehmite 溶膠及凝膠……… 24 4-3-2 氧化鋁AH35 之表面批覆boehmite…………… 24 4-3-3 氧化鋁nm--Al2O3與矽烷耦合劑MPS之反應. 25 4-3-4 廣角X 光繞射儀 (WAXD) ……………………. 26 4-3-5 掃描式電子顯微鏡 (SEM) …………………… 26 4-3-6 穿透式電子顯微鏡 (TEM) …………………… 26 4-3-7 傅立葉轉換紅外線光譜儀 (FT-IR) ………… 27 4-3-8 熱重分析儀 (TGA) …………………………… 27 4-3-9 以熔融混鍊法製備氧化鋁/聚碳酸酯複材…….27 4-3-10 以溶液混掺法製備氧化鋁/聚碳酸酯複材…….28 4-3-11 以溶液澆注法製備氧化鋁/聚碳酸酯複材…… 28 4-3-12 氧化鋁/聚碳酸酯複材之機械性質量測………28 五、結果與討論…………………………………… 36 5-1 氧化鋁特徵鑑定………………………………………… 36 5-1-1 氧化鋁晶型鑑定……………………………….. 36 5-1-2 氧化鋁粒徑大小與表面型態的觀測………….. 36 5-2 氧化鋁AH35 之表面反應塗覆boehmite……………….. 36 5-2-1 boehmite 溶膠/凝膠的製…………………………… 36 5-2-2 氧化鋁AH35 之表面批覆boehmite……………. 37 5-3 nm-gamma-Al2O3與矽烷耦合劑MPS之反應性……………… 38 5-4 以溶液澆注法製備氧化鋁/聚碳酸酯複材……………... 38 5-5 不同混摻方式之氧化鋁/PC 複材之名稱定義………….. 40 5-6 氧化鋁/PC 複材的熱重分析……………………………. 40 5-7 改質後氧化鋁/PC 之FT-IR 分析………………………... 41 5-8 氧化鋁/PC 複材的DSC 分析……………………………. 42 5-9 氧化鋁/PC 複材的機械性質分析……………………….. 43 5-10 氧化鋁/PC 複材的拉伸斷裂面………………………….. 45 六、結論………………………………………………………. 87 七、參考文獻………………………………………………. 88 表目錄 表3-1 各種氧化鋁晶型參數…………………………………… 12 表3-2 三種氫氧化鋁所對應的 FT-IR 吸收峰…………………. 13 表3-3 MPS縮合後所對應的13C(-CH2)及29Si液態 NMR光 譜…………………………………………………………. 14 表4-1 氧化鋁之表面批覆 boehmite 的實驗參數一覽………… 30 表4-2 WAXD 實驗設定條件…………………………………… 32 表5-1 熔融混鍊之氧化鋁/聚碳酸酯複材的熱裂解溫度一覽... 47 表5-2 溶液混摻之氧化鋁/聚碳酸酯複材的熱裂解溫度一覽... 48 表5-3 不同混掺方式之氧化鋁/聚碳酸酯複材的DSC第一次與 第二次升溫Tg值整理………………………………… 49 表5-4 不同混掺法之氧化鋁/聚碳酸酯複材的機械強度一覽... 50 圖目錄 圖3-1 氧化鋁的晶型轉變順序圖………………………………... 15 圖3-2 -Al2O3的構造圖………………………………………..... 16 圖3-3 -Al2O3於室溫水中,IR圖譜隨時間的變化…………… 17 圖3-4 boehmite sol 中添加之酸量與其對應之relative gelling volume……………………………………………………... 18 圖3-5 carbonate 與ester 之酯基間進行酯交換反應之示意圖…. 19 圖3-6 MPS 理想中的兩種縮合結構…………………………….. 20 圖4-1 氧化鋁表面批覆 boehmite 之實驗流程圖……………….. 33 圖4-2 反應後氧化鋁的取得方式之流程圖…………………….. 34 圖4-3 啞鈴形拉力試片示意圖…………………………………... 35 圖5-1 實驗中使用之兩種氧化鋁(AH35、nm--Al2O)的WAXD 圖譜………………………………………………………... 52 圖5-2 以 sol-gel 法製備之boehmite 的WAXD圖譜……………. 53 圖5-3 as-received AH35 的SEM影像…………………………… 54 圖5-4 as-received AH35 之TEM影像…………………………… 55 圖5-5 as-received nm--Al2O3之TEM影像……………………. 56 圖5-6 不同膠溶時間下所得的 boehmite 溶膠之雷射粒徑分布 圖…………………………………………………………... 57 圖5-7 反應後 AH35(離心清洗後)仍有boehmite 殘留之FT-IR 示意圖……………………………………………………... 58 圖5-8 表面批覆處理後氧化鋁之 TEM 影像……………………. 59 圖5-9 nm--Al2O3與MPS反應不同時間之FT-IR圖譜………… 62 圖5-10 經MPS改質後nm--Al2O3之TEM影………………… 63 圖5-11 改質前與改質後之nm--Al2O3於不同溶劑中,經超音波 震盪1.5hr後之分散性……………………………………. 64 圖5-12 PC 顆粒及不同透明度區域的PC 薄膜之DSC 第一次升溫圖………………………………………………………... 65 圖5-13 不同透明程度的 PC 薄膜之實物照片………………. ….. 66 圖5-14 使用不同溶劑之 7wt% PC 溶液進行casting 之薄膜實物 照片………………………………………………………... 67 圖5-15 於氮氣環境下進行 solution casting 製備之薄膜………… 68 圖5-16 熔融混鍊之改質前後氧化鋁/PC 複材的TGA 圖譜…….. 69 圖5-17 溶液混掺之改質前後氧化鋁/PC 複材的TGA 圖譜…….. 71 圖5-18 不同混摻方法下,改質前後氧化鋁/PC複材之熱裂解溫 度(Td)對氧化鋁含量作圖………………………………… 73 圖5-19 不同混摻方式之改質氧化鋁/PC 複材熱處理後之FT-IR 圖譜……………………………………………………….. 74 圖5-20 熔融混鍊之改質前後氧化鋁/PC 複材的DSC 第一次升 溫圖………………………………………………………... 75 圖5-21 PC 顆粒與經烘乾處理所製備之溶液混掺複材(solution -as/PC 10/90)的DSC 第一次升溫圖…………………… 76 圖5-22 以DSC獲得之不同混摻方式複材的Tg對氧化鋁添加量 作圖………………………………………………………... 77 圖5-23 熔融混鍊後之改質前後氧化鋁/PC 複材的均勻性差異… 78 圖5-24 熔融混鍊之改質前後氧化鋁/PC 複材的應力-應變圖…... 79 圖5-25 溶液混摻之改質前後氧化鋁/PC 複材的應力-應變圖….. 80 圖5-26 不同混摻法下,氧化鋁/PC 複材之Young’s Modulus 對 氧化鋁含量的作圖………………………………………... 81 圖5-27 不同混摻法下,氧化鋁/PC 複材之韌性對氧化鋁含量的 作圖……………………………………………………….. 82 圖5-28 熔融混鍊之氧化鋁/PC 5/95 複材的拉伸斷裂面SEM 影 像………………………………………………………….. 83 圖5-29 熔融混練之氧化鋁/PC 10/90 複材的拉伸斷裂面SEM 影 像………………………………………………………... 84 圖5-30 溶液混練之氧化鋁/PC 5/95 複材的拉伸斷裂面SEM 影 像…………………………………………………………... 85 圖5-31 溶液混練之氧化鋁/PC 10/90 複材的拉伸斷裂面SEM 影 像…………………………………………………………... 86

    [1] 孫國青, 聚碳酸酯(PC)樹脂的應用、市場與發展策略. (1985)
    [2] T. Wu and S. Lee, “Carbon tetrachloride-induced crack healing in polycarbonate” J. Polym. Sci.: Part B: Polym. Phys., 32, 2055 (1994).
    [3] T. Wu, S. Lee, and W. C. Chen, “Acetone Absorption in Irradiated Polycarbonate”, Macromolecules, 28, 5751-5757 (1995).
    [4] C. K. Liu, C. T. Hu, S. Lee, “Effect of Compression and Thickness on Acetone Transport in Polycarbonate.” polym. Eng. Sci., 45, 693 (2005)
    [5] H. C. Park, Y. B. Lee, S. G. Lee, C. H. Lee, J. K. Kim, S. S. Hong, S. S. Park, “Synthesis of Beta-Alumina Powders by Microwave Heating from Solution- Derived Precipitates.” Ceram. Int., 31, 293 (2005)
    [6] S. Desset, O. Spalla, P. Lixon, B. Cabane, “Variation of The Surface State of alpha-Alumina Through Hydrothermal Treatments.” Colloids Surf., A, 196, 1 (2002)
    [7] P. J. Eng, T. P. Trainor, J.G.E. Brown, G. A.Waychunas, M. Newville, S. R. Sutton, M. L. Rivers, “Structure of the Hydrated alpha-Al2O3 (0001) Surface.” Science., 288, 1029 (2000)
    [8] B. E. Yoldas, “Alumina Sol Preparation from akoxides.” Am. Ceram. Soc. Bull., 54, 286 (1975)
    [9] B. E. Yoldas, “Hydrolysis of Aluminum Alkoxides and Bayerite Conversion.” J. Appl. Chem. Biotechol., 23, 803 (1973)
    [10] B. E. Yoldas, “Aluminua Gels That Form Porous Transparent Al2O3.” J. Mater. Sci., 10 [11], 1856 (1975)
    [11] M. Nguefack, A.F. Popa, S. Rossignol, C. Kappenstein, “Preparation of alumina through a sol-gel process. Synthesis, Characterization, Thermal Evolution and Model of Intermediate Boehmite.” Phys. Chem. Chem.Phys., 5, 4279 (2003)
    [12] W. H. Shih, L. L. Pwu, “Rheology of Aqueous Boehmite-coated Silicon Nitride Suspensions and Gels.” J. Mater. Res., 10, 2808 (1995)
    [13] M. Buchta, W. H. Shih, “Boehmite and Yttrium Oxide Coating on Silicon Nitride form Aqueous Sols.” Mater. Res. Symp. Proc., 432, 201(1997)
    [14] W. H. Shih, C. Y. Yang, “Effect of Acid on the Coating of Boehmite onto Silicon Carbide Particles on Aqueous Suspensions.” J. Am. Ceram.Soc., 82 [2], 436 (1999)
    [15] E. Blendell, H. K. Bowen, R. L. Coble, “High Purity Alumina by Controlled Precipitation from Aluminum Sulfate Solutions.” Am. Ceram. Soc. Bull., 63 [6], 797 (1984)
    [16] R. M. Smith, A. E. Martell, Critical Stability Constants, Vol. 4, Inorganic Complexes. Plenum Press, New York (1976)
    [17] J. A. Mieth, Y. J. Huang, J. A. Schwarz, “Experimental Procedures to Evaluate Dissolution, Metal Ion Buffering, and Catalytic Precursor Speciation During Catalyst Preparation” J. Colloid Interface Sci., 123,
    366 (1988)
    [18] E. Santacesaria, S. Carra, I. Adami, ” Adsorption of Hexachloroplatinic Acid on -Alumina” Ind. Eng. Chem. Prod. Res. Dev., 16, 41(1977)
    [19] G. Lefe`vre, M. Duc, P. Lepeut, R. Caplain, M. Fe´doroff, “Hydra- tion of gamma-Alumina in Water and Its Effects on SurfaceReactivity.” Langmuir,18, 7530 (2002)
    [20] X. Carrier, E. Marceau, J. F. Lambert, M. Che, “Transformations of gamma-Alumina in aqueous suspensions:1.Alumina chemical weathering studied as a function of pH.” J. Colloid Interface Sci., 308, 429 (2007)
    [21] A. Chandra, L. S. Turing, P. Gopalan, R. M. Rowell, S. Gong, “Study of Utilizing Thin Polymer Surface Coating on The Nanoparticles for Melt Compounding of Polycarbonate/Alumina Nanocomposites and Their Optical Properties.” Compos. Sci. Technol., 68, 768 (2008)
    [22] H. Zhao, R. K. Y. Li, “Crystallization, Mechanical, and Fracture Behaviors of Spherical Alumina-Filled Polypropylene Nanocomposites.” J. Polym. Sci., Part B: Polym. Phys., 43, 3652(2005)
    [23] B. J. Ash, R. W. Siegel, L. S. Schadler, “Mechanical Behavior of Alumina/poly(methyl methacrylate) Nanocomposites.”Macromolecules., 37, 1358 (2004)
    [24] G. Pompe, L. Häubler, “Investigations of Transesterification in PC/PBT Melt Blends and The Proof of Immiscibility of PC and PBT at Completely Suppressed Transesterification.” J. Polym. Sci., Part B:Polym. Phys., 35, 2161 (1997)
    [25] G. Montaudo, C. Puglisi, F. Samperi, “Chemical Reactions Occurring in The Thermal Treatment of PC/PMMA Blends.” J. Polym. Sci., Part A:Polym. Chem., 36, 1873 (1998)
    [26] F. J. Baltaacute Calleja, L. Giri, T. A. Ezquerra, S. Fakirov, Z. Roslaniec,“Microhardness of Condensation Polymers and Copolymers. 1.Coreactive Blends of Polyethylene Terephthalate and Polycarbonates.”J. Macromol. Sci. Part B Phys., 36, 655 (1997)
    [27] M. Jayakannan, P. Anilkumar, “Mechanistic Aspects of Ester-Carbonate Exchange in Polycarbonate/Cycloaliphatic Polyester with Model Reactions.” J Polym. Sci Part A: Polym Chem 42: 3996 (2004)
    [28] W. G. Zheng, Z. H. Wan, Z. N. Qi; F. S. Wang, “NMR Studies on the Transesterification of polycarbonate/polyethylene Terephthalate blends.” Polymer, 34, 4982 (1993)
    [29] G. Montaudo, C. Puglisi, F. Samperi, “Mechanism of Exchange in BPT/PC and PET/PC Blends.Composition of the Copolymer Formed in the Melt Mixing Process.” Macromolecules, 31, 650 (1998)
    [30] K. H. Wei, J. C. Ho, ”The Role of Transesterification on the Miscibility in Blends of Polycarbonate and Liquid Crystalline Copolyester”Macromolecules, 30, 1587 (1997)
    [31] N. Nishiyama, K. Horie, “Hydrolysis and Condensation Mechanisms of a Silane Coupling Agent Studied by 13C and 29Si NMR.” J. Appl. Polym. Sci., 34, 1619 (1987)
    [32] J. D. Miller, K. P. Hoh, H. Ishida, “Studies of the Simulation of Silane Coupling Agent Structure on Praticulate Fillers; The pH effect.” Polym. Compos., 5, 1(1984)
    [33] Z. Guo, T. Pereira, O. Choi, Y. Wang, H. T. Hahn, “Surface Functionalized Alumina Nanoparticle Filled Polymeric Nanocomposites with Enhanced Mechanical Properties.” J. Mater. Chem., 16, 2800(2006)
    [34] J. Kim, P. H. Kang, Y. C. Nho, “Characterization of Mechanical Properties of gamma-Al2O3 Dispersed Epoxy Resin Cured by gamma-ray Radiation”J. Appl. Polym. Sci., 91, 1898 (2004)
    [35] 郭宗倫, “氧化鋁粒徑尺寸與晶型對表面反應性的影響", 國立成功大學化工所碩士論文 (2008)

    下載圖示 校內:2014-08-26公開
    校外:2014-08-26公開
    QR CODE