| 研究生: |
王星弼 Wang, Hsing-pi |
|---|---|
| 論文名稱: |
探討EGR-1在調控血管通透性所扮演的角色 The role of Egr-1 in mediating vascular permeability |
| 指導教授: |
吳梨華
Wu, Li-Wha |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 血管新生 、血管通透性 、Egr-1 、NAB2 、Cav-1 |
| 外文關鍵詞: | Cav-1, NAB2, vascular permeability, Egr-1, angiogenesis |
| 相關次數: | 點閱:1365 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
血管通透性對於在許多器官而言,是種複雜的調控機制,在血管新生、腫瘤轉移和發炎反應等,都會引發血管通透性,然而這些生理病變的發生,往往伴隨著Egr-1的活化。Egr-1是屬於立即調控基因家族的成員之一,為一個鋅手指的轉錄因子,在血管受到傷害、生長因子、細胞激素、賀爾蒙以及環境的影響下,Egr-1的表現量會上升。一但Egr-1被誘導後,Egr-1會和coactivators或者corepressor結合在標的基因啟動子的GC序列上,調控其轉錄的活性。Cav-1在內皮細胞中,被大量的表現,調控著物質間的運輸、滲透性的影響和血管新生。利用生物資訊工具,在Cav-1的啟動子上面,發現有Egr-1的結合位,我們因此假設,Egr-1可能具有調控Cav-1轉錄的活性,進而去影響血管的通透性,在我們的研究發現中,內生性Egr-1缺陷的內皮細胞中,VEGF-A不能誘導其通透性的增加。在啟動子的報告基因的證明下,Egr-1可以單獨促進Cav-1啟動子的活性;但在NAB2存在下,Egr-1可抑制Cav-1啟動子的活性。同時在內皮細胞中,Egr-1表現會增加NAB2的表現,進而降低Cav-1 mRNA和蛋白質的表現。綜合以上結果,Egr-1經由NAB2的影響,而為Cav-1負調控者,因此,Egr-1在血管通透性調節上扮演重要的角色。
Vascular permeability is a tightly regulated process in various organ beds and an essential component of angiogenesis, tumor metastasis, and inflammation. Early growth response-1 gene (EGR-1) is a member of immediate-early gene family. Egr-1 encodes a zinc finger-containing DNA-binding protein and is up-regulated by mechanical injury, numerous agonists such as growth factors, cytokines, hormones and environmental stimuli. Once induction, Egr-1 together with coactivators or corepressors binds to GC consensus sequences in the promoter region of target genes, resulting in transcriptional activation or repression. We have previously shown that Egr-1 deficient mice lost the ability to respond to VEGF-A-induced vessel permeability. Caveolin 1 (Cav-1) is an abundant protein in endothelial cells (ECs), which regulate transcytosis, permeability, vascular tone, and angiogenesis. By using bioinformatic tools, we found several putative Egr-1 binding sites in the Cav-1 promoter. We hypothesized that Egr-1 might be a transcription mediator for the expression of Cav-1. In our study, ECs lack of endogenous Egr-1 in vitro lost the ability to respond to VEGF-mediated increase of vascular permeability, suggesting a role of Egr-1 in vascular permeability. Promoter-driven luciferase assay was used to show that Egr-1 alone promoted Cav-1 promoter activity. Egr-1 together with NAB2, a corepressor of Egr-1, inhibited the Cav-1 promoter activity. Consistent with the notion, Egr-1 overexpression increased NAB2 expression while decreasing Cav-1 expression at mRNA and protein levels. Together, Egr-1 negatively mediated Cav-1 expression partly via induction of NAB2.Egr-1 thus is a novel mediator for vascular permeability.
1.Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005;437(7058):497-504.
2.Oh SJ, Jeltsch MM, Birkenhager R, et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 1997;188(1):96-109.
3.Flamme I, Breier G, Risau W. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 1995;169(2):699-712.
4.Claffey KP, Robinson GS. Regulation of VEGF/VPF expression in tumor cells: consequences for tumor growth and metastasis. Cancer Metastasis Rev 1996;15(2):165-76.
5.Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380(6573):435-9.
6.Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380(6573):439-42.
7.Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3(5):391-400.
8.Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999;4(6):915-24.
9.Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995;108 ( Pt 6):2369-79.
10.Esser S, Lampugnani MG, Corada M, Dejana E, Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 1998;111 ( Pt 13):1853-65.
11.Feng D, Nagy JA, Pyne K, Hammel I, Dvorak HF, Dvorak AM. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 1999;6(1):23-44.
12.Ishida A, Murray J, Saito Y, et al. Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 2001;188(3):359-68.
13.Takahashi N, Seko Y, Noiri E, et al. Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circ Res 1999;84(10):1194-202.
14.Chintalgattu V, Nair DM, Katwa LC. Cardiac myofibroblasts: a novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol 2003;35(3):277-86.
15.Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 2002;13(1):39-53.
16.Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002;8(1):27-34.
17.Lambeng N, Wallez Y, Rampon C, et al. Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res 2005;96(3):384-91.
18.Mechtcheriakova D, Wlachos A, Holzmuller H, Binder BR, Hofer E. Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1. Blood 1999;93(11):3811-23.
19.Sarateanu CS, Retuerto MA, Beckmann JT, et al. An Egr-1 master switch for arteriogenesis: studies in Egr-1 homozygous negative and wild-type animals. J Thorac Cardiovasc Surg 2006;131(1):138-45.
20.Mitchell A, Dass CR, Sun LQ, Khachigian LM. Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumour growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acids Res 2004;32(10):3065-9.
21.Di Loreto C, Tell G, Pestrin M, Pandolfi M, Damante G, Puglisi F. PTEN and Egr-1 expression in thyroid proliferative lesions. Cancer Lett 2005;224(1):105-9.
22.Tsai-Morris CH, Cao XM, Sukhatme VP. 5' flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res 1988;16(18):8835-46.
23.Gashler A, Sukhatme VP. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 1995;50:191-224.
24.Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 1996;271(5254):1427-31.
25.Silverman ES, Khachigian LM, Lindner V, Williams AJ, Collins T. Inducible PDGF A-chain transcription in smooth muscle cells is mediated by Egr-1 displacement of Sp1 and Sp3. Am J Physiol 1997;273(3 Pt 2):H1415-26.
26.Fu M, Zhang J, Lin Y, et al. Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads. Biochem J 2003;370(Pt 3):1019-25.
27.Lucerna M, Mechtcheriakova D, Kadl A, et al. NAB2, a corepressor of EGR-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic responses of endothelial cells. J Biol Chem 2003;278(13):11433-40.
28.Kumbrink J, Gerlinger M, Johnson JP. Egr-1 induces the expression of its corepressor nab2 by activation of the nab2 promoter thereby establishing a negative feedback loop. J Biol Chem 2005;280(52):42785-93.
29.Svaren J, Sevetson BR, Apel ED, Zimonjic DB, Popescu NC, Milbrandt J. NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol Cell Biol 1996;16(7):3545-53.
30.Kim JH, Kim WS, Kang JH, Lim HY, Ko YH, Park C. Egr-1, a new downstream molecule of Epstein-Barr virus latent membrane protein 1. FEBS Lett 2007;581(4):623-8.
31.Bauer PM, Yu J, Chen Y, et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A 2005;102(1):204-9.
32.Dewever J, Frerart F, Bouzin C, et al. Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol 2007;171(5):1619-28.
33.Lin MI, Yu J, Murata T, Sessa WC. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 2007;67(6):2849-56.
34.Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 1999;274(22):15781-5.
35.van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW. Isolation of endothelial cells from fresh tissues. Nat Protoc 2008;3(6):1085-91.
36.Boucher RC, Ranga V, Pare PD, Inoue S, Moroz LA, Hogg JC. Effect of histamine and methacholine on guinea pig tracheal permeability to HRP. J Appl Physiol 1978;45(6):939-48.
37.Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 2000;6(12):1355-61.
38.Lucerna M, Pomyje J, Mechtcheriakova D, et al. Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Res 2006;66(13):6708-13.