| 研究生: |
湯家智 Tang, Chia-Chih |
|---|---|
| 論文名稱: |
投射彈體對水泥質材料衝擊阻抗之研究 Resistance of Cement-Based Materials to Impact of Small Projectile |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 208 |
| 中文關鍵詞: | 控制性低強度材料 、纖維 、衝擊實驗 、貫入阻抗 、防護工程 |
| 外文關鍵詞: | Controlled Low-strength Material (CLSM), fiber, impact experiment, perforation resistance, protective construction |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用三種不同性質的水泥質營建材料,分別規劃應用在地下化防護結構工程中回填覆土層、避彈設施以及主結構等施工建材,期能建立一套符合耐衝擊與抗貫穿能力之地下防護結構工程規範標準的材料組合模式,達到建構最佳防護工程之設計。研究成果可提供在地下化整體性防護工程規劃設計階段時,做為提昇投射彈體撞擊之阻抗效應參考。
本研究透過試驗方式,以土壤質控制性低強度材料、高流動性混凝土以及活性粉混凝土等三種具有優異工程特性之水泥質材料為試驗樣本。藉由材料配比設計、混合物漿體新拌性質實驗、基本力學實驗以及一系列衝擊實驗等方式進行試驗;其中衝擊試驗採用高壓氣槍發射以卵弧型鋼彈為投射彈體,彈體重14.7g,直徑12.5mm,長40.0mm,彈頭徑弧比2.5,試驗撞擊速度設定於90 m/s至150m/s之間。本研究依其材料工作度、力學行為以及靶體承受投射彈體撞擊荷載之貫入行為、破壞模式與終端彈道效應等試驗結果,分別進行分析、比較與討論。
由試驗結果顯示,三種材料在新拌階段之工作度與基本力學行為均優於傳統水泥質材料之工程性質。在一系列的衝擊試驗結果顯示,材料中添加適量的纖維含量,可大幅增加韌性性質,提昇其抗貫穿效能。故本研究將整體防護工程原有材料配置模式進行調整,回填覆土層由土壤質CLSM取代,避彈用塊石混凝土由活性粉混凝土取代,主結構混凝土採用具自充填高流動性鋼纖維混凝土取代。由上述取代材料對投射彈體的阻抗效應驗證,應可有效地提昇地下化防護結構工程耐衝擊性與抗貫穿能力之設計參數要求。
This research used three kinds of cement-based materials of various properties, designed and applied respectively as materials for the backfill overburden, projectile preventing facilities, and the main structure in overall protective engineering, all aiming to establish a material mixture model which is impact-enduring and perforation-resistant in protective construction, in order to confirm the best design of the protective structure. The result of this research can provide the military with reference indexes for the resistance effect of overall protective structure enhancement against projectile penetration in the design of underground protective construction.
By means of experiments, three cement materials with outstanding construction properties were chosen as experiment samples, namely, soil-based controlled low-strength material, self-compacting concrete, and reactive powder concrete. In this impact experiment investigation, the high pressure gas guns launched with ogive-nose steel projectiles, it weight 17.4 g, 12.5 mm diameter, 2.5 caliber-radius-head projectiles when subjected to impact velocity ranges from 90 m/s to 150 m/s. Based on the material mix design and the results of freshly mixed grout experiments, basic mechanics experiments, as well as a series of impact experiments, workability and mechanical behaviour of the materials, penetration behaviour, failure model and the terminal phenomena of projectile and target under dynamic impact loading were analysed, compared, and discussed.
Test results show that the workability in the fresh concrete phase and basic mechanical behaviour for these three materials are all better than the construction properties of traditional materials. As a series of impact experiment results show, adding the right amount of fiber into the materials can increase their toughness and enhance their perforation resistance. This research has therefore made some changes to the original material mixture model for overall protective construction. Soil-based CLSM was used as the replacement material of backfill overburden, reactive powder concrete replaced projectile preventing stone concrete, and high-fluidity steel fiber concrete with self-filling capacity was applied in the main structure.
As proven by the materials superior projectile impact resistance, these above mentioned materials can better meet the design requirements, such as impact endurance and perforation resistance prevention for overall underground protective construction.
1. ACI-544, “Measurement of Fiber Reinforced Concrete,” ACI Materials Journal, Vol.85, No. 6, pp.583-593, (1988).
2. ACI Committee 230,“State-of-the-art report on soil cement,” ACI Material Journal, Vol. 87, No. 4, pp. 395-417, (1990).
3. ACI Committee 318-02, “Buildings code Requirement for Structural Concrete,” American Concrete Institute, (2002).
4. ACI Committee 229R,“Controlled Low Strength Materials (CLSM),” ACI 229R-99, (1999).
5. Almansa E.M. and Canovas M.F., “Behavior of Normal and Steel Fiber Reinforced Concrete under Impact of Small Projectiles,” Cement and Concrete Research, Vol. 29, pp.1807-1814, (1999).
6. Amerikian A., “Design of Protective Structure,” Report NT-3726, Bureau of Yards and Docks, Department of the Navy, (1950).
7. Army Corps of Engineering, “Fundamentals of protective design,” Report AT120-7821, (1946).
8. ASTM C1018-92,“Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber- Reinforced concrete (Using Beam with Third-Point Loading),” ASTM standards, part 04.02, Concrete and Aggregates, pp.514-520, (1993).
9. Awerbuch J., “A Mechanics Approach to Projectile to Penetration,” Israel J. of Technology, Vol. 8, No. 4, pp. 375-383,(1970).
10. Backman M.E. and Goldsmith Werner, “The Mechanics of Penetration of Projectiles into Targets,” Int. J. Eng. Sci., Vol. 16, pp. 1-99, (1978).
11. Banthia N., Mindess S., Benturt A., Pigeon M., “Impact Testing of Concrete Using a Drop-Weight Impact Machine,” Experimental Mechanics, pp.63-69, (1989).
12. Bernard R.S., “A Projectile Penetration Theory for Layered Targets,” U.S. Army Waterways Experiment Station, Vicksburg, Misc. Paper AD-A 0205976, (1976).
13. Bindiganavile V. and Banthia N., “Polymer and Steel Fiber Reinforced Cementations Composites under Impact Loading,”ACI Materials Journal, Jan.-Feb., pp.10-24, (2001).
14. Bishop R.F., Hill R., and Mott N.F., “The Theory of Indentation and Hardness,” Journal, Proceedings of the Royal Society, Vol.37, No.3, pp.147-159, (1945).
15. Butler D.K., “An Analytical Study of Projectile Penetration in Rock,” U.S. Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A 012140, (1965).
16. Chang, C. F. and Chen, J. W.,“Development and Production of Ready-Mixed Soil Materials,” ASCE, Journal of Materials in Civil Engineering, Vol. 18, Issue 6, pp. 792-799, (2006).
17. Crouch, L.K., Gamble, R., Broaden, J.F., and Tucker, C.J., “Use of High-fines Limestone Screenings as Aggregate for Controlled Low-Strength Material (CLSM),” ASTM STP 1331, pp.45-59, (1998).
18. “Design And Analysis of Hardened Structures to Convention Weapon Effects,” Headquarters Departments of The Army, The Air Force, The Navy and The Defense Special Weapons Agency Washington, (1998).
19. Forrestal M.J., Luk V.K., “Dynamic Spherical Cavity-Expansion in a Compressible Elastic-Plastic Solid,” Journal of Applied Mechanics, Vol. 55, pp.275-279, (1988).
20. Forrestal M. J. and Luk V. K., “Penetration into Soil Targets,” Int. J. Impact Eng. Vol. 12, No.3, pp427-444, (1992).
21. Forrestal M.J., Altman B.S., Cargile J.D., “An Empirical Equation for penetration depth of Ogive-Nose Projectiles into Concrete Targets,” International Journal of Impact Engineering, Vol. 15, No.4, pp.395-405, (1994).
22. Forrestal M.J., Frew D.J., Hanchak S.J. and Brar N.S., “A Penetration of Grout and Concrete Targets with Ogive-Nose Steel Projectiles,” International Journal of Impact Engineering, Vol. 18, No.8, pp.465-476, (1996).
23. Forrestal M. J. and Tzoud D.Y., “A Spherical Cavity-Expansion Peneration model for Concrete Targets,” International Journal of Solids Structure, Vol. 34, No.31-32, pp.4127-4146, (1997).
24. Forrestal M.J., Frew D.J., Hickerson J.P. and Rohwer, “Penetration of Concrete Targets Deceleration-Time Measurements,” International Journal of Impact Engineering, Vol. 28, pp.479-497, (2003).
25. Frew D.J., Hanchak S.J., Green M.L. and Forrestal M.J., “Penetration of Concrete Targets with Ogive-Nose Steel Projectiles,” Int. J. Impact Eng. Vol. 21, No.6, pp489-497, (1998).
26. Gibson R.E. and Anderson M.A., “In-situ Measurement of Soil Properties With the Pressure Meter,” Civil Engineering and Public Works Review, Vol.56, No.685, Ⅲ, pp.615-618, (1961).
27. Goodier J.N., “On the Mechanics of Indentation and Crate ring in Solid Targets of Strain-Hardening Metal by impact of Hard and Soft Sphere,” Proceedings of 7th Symp. Hypervelocity Impact, AIAA J. Vol.Ⅲ, (1965).
28. Gorbett G.G., Reid S.R. and Johnson W., “Impact Loading of Plates and Shells by Free-Flying Projectiles : A Review,” Int. J. of Impact Eng., Vol. 18, No. 2, pp.141-230, (1996).
29. Hill R., “The Mathematical Theory of Plasticity,” Oxford University Press, London, (1947).
30. Himanshu Tripathi, Charles E. Pierce, Sarah L. Gassman, and Travis W. Brown, “Methods for Field and Laboratory Measurement of Controlled Low-Strength Materials,” Journal of ASTM International, Vol. 1, No. 6, pp. 1-15,(2004).
31. Hitch, J.L., “Test Methods for Controlled Low-Strength Materials (CLSM): Past, Present, and Future,” The Design and Application of Controlled Low-Strength Materials (Flowable Fill), ASTM STP 1331, A. K. Howard and J. L. Hitch, Eds., ASTM International, West Conshohocken, PA, pp. 3-10, (1998).
32. Kim, J.K., Han, S.H., Park, Y.D. and Noh, J.H., “Material Properties of Self-Flowing,” J. Mat. Civil Engrg, ASCE, Vol.10(4), pp.244-249, (1998).
33. Landwermeyer J.S. and Rice, E.K., “Comparing Quick-Set and Regular CLSM,” Concrete International, pp. 34-39, (1998).
34. Li, Q.M., Reid, S.R., Wen, H.M. and Telford, A.R., “Local impact effects of hard missiles on concrete targets,” International Journal of Impact Engineering, Vol.32, No.4, pp.224-284, (2005).
35. Mindess S., Banthia N. and Benturt A., “The Response of Reinforce Concrete Beams With a Fiber Concrete Matrix to Impact Loading,” The International Journal of Cement Composites and Lightweight Concrete, Vol. 8, No.3, pp. 165-170, (1986).
36. Mindess S., and Vondran G., “Properties of Concrete Reinforced with Fibrillated polypropylene Fibers Under Impact Loading,” Cement and Concrete Research, Vol. 18, pp. 109-115, (1988).
37. Mindess S., Yan C., Vondran G., and Benturt A., “Impact Resistance of Concrete Containing Both Conventional Steel Reiforcement and Fibrillated Polypropylene Fibers,” ACI Materials Journal, Nov.-Dec., pp. 545-549, (1989).
38. Manolis G. D., Gareis P. J., Tsonos A. D., Neal J. A., “Dynamic Properties of Polpropylene Fiber Reinforced Concrete Slabs,” Cement and Concrete Composites, Vol. 19, pp.341-349, (1997).
39. National Defense Research Committee, “Effect of impact and explosions,” Summary Technical Report on Division 2, Vol. 1, Washington, pp191-228, (1946).
40. Nmai C.K., Neal F.M., Landwermeyer J.S. and Dean M., “New Foaming Agent for CLSM Applications,” Concrete International, (1997).
41. Petry L., “Monographic de Systems Artilleries, ” Brussels,(1910).
42. Pons, F. and Kerns, L., “Development of Engineering Properties for Regular and Quick-Set Flower Fill,” ASTM STP 1331, pp.67-86, (1998).
43. Richard P, and Cheyrezy M., “Composition of reactive powder concretes,” Cement and Concrete Research Vol.25, No.7 pp.1501–1511, (1995).
44. Rohani B., “Analytical of Projectile Penetration into Concrete and Rock Targets,” U.S. Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A 016909, (1975).
45. Russell H.G., “ACI Defines High- Performance Concrete,” Concrete International, Vol.21, No.2, pp. 56-59, (1999).
46. “Structures to Resist the Effects of Accidental Explosion,” TM5-1300, Department of the Army, the Navy, the Air Force, June, (1969).
47. Suaris W., Banthia N. and Benturt A., “Test Methods for Impact Resistance of Fiber Reinforced Concrete Beams,” Cement and Concrete Research, Vol. 10, pp.41-51, (1980).
48. Suaris, W., Shah, S. P., “Test Methods for Impact Resistance of Fiber Reinforced Concrete,” Research Report, U. S. Army Research Office, Dec., pp.247-263, (1984).
49. Tai, Y.S. and Tang, C.C., “Reactive Powder Concretes Plates Response to Flat Projectile Impact,” Structures Under Shock and Impact IX, Vol.87, pp.4127-4146, (2006).
50. Warren T. L., Fossum A. F. and Frew D. J., “Penetration into Low-Strength (23 Mpa) Concrete Target Characterization and Simulations,” International Journal of Impact Engineering, Vol. 30, pp.477-503, (2004).
51. 王政, 「彈體侵徹動態響應的理論與數值分析」, 博士論文,復旦大學,上海,(2005)。
52. 王圍任, 「添加爐灰與聚丙烯纖維對預拌土壤材料力學性質之研究」, 碩士論文,國立成功大學土木工程研究所,台灣台南,(2007)。
53. 台灣營建研究院(李維鋒),「控制性低強度材料於土木工程應用之研究報告書」, 內政部營建署,第53-75頁,台北,(2002)。
54. 李介充,「溫度製程對超高強高性能混凝土力學性質影響研究」, 碩士論文,國立台灣大學土木工程研究所,台北,(1998)。
55. 李騰芳,鄭瑞濱,「高性能混凝土配比設計實作-超高強高性能混凝土配比及性質研究」, 財團法人台灣營建研究院,第205-229頁, (1998)。
56. 何濤,「動能彈在不同材料靶體中的侵徹行為研究」, 博士論文,中國科學技術大學,安徽合肥,(2007)。
57. 「防護設計-非核子武器基本防護設計」,軍事準則叢書, 陸軍司令部印製,桃園,(1988)。
58. 沈文人,「空穴膨脹理論在貫穿力學上之研究」, 碩士論文,國防大學理工學院,桃園,(2010)。
59. 沈永年、陳仙州、王聰田,「低強度高流動混凝土於管道回填工程之運用」, 第十一屆鋪面工程學術研討會論文集,第665-672頁,(2001)。
60. 宋佩瑄, 「纖維混凝土實務」, 現代營建社,第94頁,(1991)。
61. 宋佩瑄,涂啟仁,「不同纖維含量之纖維混凝土在定變率下之工程性質」, 國軍第十屆軍事工程研討會論文集,第159-174頁,(1998)。
62. 宋佩瑄,許銘辰,「不同強度鋼纖維混凝土工程性質之研究」, 中華民國建築學會第十三屆建築研究成果發表會論文集,第991-996頁,(2001)
63. 宋佩瑄,涂啟仁,「聚丙烯纖維水泥砂漿之抗壓及抗拉性質」, 大漢學報,第17期,第17-26頁,(2002)。
64. 宋佩瑄,徐崧茂,「聚丙烯纖維及尼龍纖維混凝土工程性質之研究」,中華民國第十四屆建築研究成果發表會論文集,第F3-1~4頁,(2002)。
65. 巫漢添,李騰芳,林忠仁,陳彥夙,「聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效(上)」, 現代營建社,第246期,第68-76頁,(2000)。
66. 巫漢添,李騰芳,林忠仁,陳彥夙,「聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效(下)」, 現代營建社,第247期,第59-67頁,(2000)。
67. 吳江富,陳志超,王永東,「自充填混凝土(Self-Compacting Concrete)之特性與應用」, 中華技術,第50期,(2001)。
68. 吳淵洵、李明哲、陳雨音,「高性能回填材料(CLSM)產製-棄土拌合CLSM之工程性質」, 財團法人台灣營建研究院叢書,第17-31頁,台北,(2002)。
69. 林維明、黃兆龍、江奇成,「營建剩餘土石方及混合廢鑄件料再生利用為高性能低強度混凝土」, 現代營建社,第297期,第19-29頁,(2004)。
70. 林健三,「預拌土壤材料工程性質之研究」, 國立成功大學土木工程學系,碩士論文,台南,(2005)。
71. 林豐益、張炳坤、黃兆龍,「高性能混凝土之力學性質探討」, 中華民國建築學會「建築學報」,第22期,第1~12頁,(1997)。
72. 苗伯霖,「新型高性能超高強建築材料-活性粉混凝土」, 營建知訊, 第162期,第52-60頁,(1996)。
73. 洪志武,「纖維直徑分布對混凝土強度之影響」, 國立成功大學土木工程學系,碩士論文,台南,(2002)。
74. 「軍事工程教範」,軍事準則叢書,陸軍司令部印製,桃園,(2005)。
75. 禹凱、錢曉倩、張軼倫、周富榮,「聚丙烯纖維對混凝土早期收縮影響的試驗研究」, 混凝土,第5期(總第211期),第64-68頁,(2007)。
76. 陳志超,王永東,「自充填混凝土配比設計、產製與施工、品質管制」, 台灣營建研究院自充填混凝土產製與應用研討會論文集,第22-33頁,(2003)。
77. 張政豐,「高性能低強度回填材料之開發與應用」, 水利署期刊,第12 期,第23-32頁,(2003)。
78. 路中華、錢立新、金建明,「任意頭形彈丸侵徹地質材料的理論分析模型」, 爆炸與衝擊,第23卷,第4期,第325-330頁,(2003)。
79. 黃兆龍,「高性能混凝土在公共工程上應用」, 中華工學院第三屆,鋼筋混凝土品質控制研討會,第1~21頁,(1997)。
80. 黃兆龍,「高性能混凝土理論與實務」, 詹氏書局,台北,第71-123頁,(2003)。
81. 黃馨,宋佩瑄,許伯秋,「聚丙烯纖維混凝土抗衝擊之研究」, 中正嶺學報,第32卷,第1期,第33-44頁,(2003)。
82. 湯家智,李明輝,陳景文,戴毓修,「控制性低強度材料對軍事防護工程的應用及可行性之探討」, 黃埔學報,第49輯,第125-138頁,(2005)。
83. 詹穎雯,「活性粉混凝土簡介」, 水利土木科技資訊季刊, 創刊號, 第3-8頁, (1998).
84. 詹穎雯、鄭瑞濱、陳育聖、胡志誠,「爐石、飛灰與底灰於營建工程之資源化應用」, 綠營建工程研討會,土木水利工程學會綠營建委員會,(2002)。
85. 詹穎雯,「自充填混凝土簡介及相關規範」, 台灣營建研究院自充填混凝土產製與應用研討會論文集,第1~21頁,(2003)。
86. 鄭伯乾,「聚丙烯纖維混凝土之抗裂力學行為」, 國立成功大學土木工程學系,碩士論文,台南,(2003)。
87. 鄭瑞濱,「高性能回填材料(CLSM)應用-新拌及硬固CLSM品質檢驗」,財團法人台灣營建研究院叢書,第83-101頁,台北,(2001)。
88. 鄭瑞濱,「高性能回填材料(CLSM)產製-新拌及硬固CLSM材料試驗」, 財團法人台灣營建研究院叢書,第51-62頁,台北,(2002)。
89. 鄭瑞濱,「活性粉混凝土構件之工程性質之研究」, 國立台灣大學土木研究所,博士論文,台北,(2003)。
90. 經濟部水利署南區水資源局,「南化水庫與高屏溪攔河堰聯通道路計畫報告書」, 經濟部水利署,(2002)。
91. 鄒代強、姚中亮、唐紹輝、楊耀亮,「填充體單軸壓縮韌性性能試驗研究」, 礦業研究與發展,第25卷,第5期,第26-29頁,(2005)。
92. 鄧作樑,張福安,璩貽安,金驊生,周承劉,「鋼纖維混凝土板於低速撞擊下破壞行為之研究」, 力學,第 19卷,第2期,第125-141,(2003)。
93. 鄧作樑,璩貽安,張福安,鄭丁興,沈柏成,「鋼纖維混凝土結構分析方法之建立與比較」, 中正嶺學報,第35卷,第2期,第1-11頁,(2007)。
94. 潘昌林,「CLSM規範及回填施工技術」, 財團法人台灣營建研究院,台北,(2001)。
95. 譚業成,「活性粉混凝土力學行為之研究」, 國立台灣大學土木研究所,碩士論文,台北,(2000)。
96. 趙文成,「簡易化、自動化一般強度自充填混凝土之工程應用與產製技術」, 土木水利,第28卷,第1期,第74-83頁,(2001)。
97. 謝孟翰,「超高強高性能混凝土之衝擊力學性質研究」, 國立台灣大學土木研究所,碩士論文,台北,(1999)。
98. 謝啟萬,陳建宏,田一佐,「土壤性質對CLSM 特性之影響」, 第十屆大地工程學術研討會論文集,第1021-1025頁,(2003)。
99. http://www.fas.org/man/dod-101/sys/smart/gbu-28.htm, Federation of American Scientists, FAS.
100. http://www.phhg.gov.tw/depart/build/,澎湖縣政府工務局網站。
校內:2015-08-24公開