簡易檢索 / 詳目顯示

研究生: 黃國棠
Haung, Go-Tang
論文名稱: 以分子軌域計算研究M(CO)6、M(CO)5X-及W(CO)5PR3內之鍵結
Investigation of Bonding in M(CO)6, M(CO)5X- and W(CO)5PR3 by Molecular Orbital Calculations
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: CO 2π電子雲密度回饋鍵結天然鍵性軌域
外文關鍵詞: natural bond orbital, CO 2π population, back bonding
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   我們利用密度泛函理論(density functional theory)搭配NBO(Natrual Bond Orbital)分析法對三個系列的錯合物M(CO)6 {M=Cr, Mo, W}、M(CO)5X- {X-=F-, Cl-, Br-}及W(CO)5PR3 {PR3= PphMe2, Pph2Me, Pph3}之CO 2π電子雲密度進行探討。
      NBO顯示在過渡金屬羰基錯合物M(CO)6q中,除了3d< 4d< 5d之傳統dπ(M)→2π(CO)的交互作用(donor-acceptor interaction)外,亦發現有兩種強度頗為可觀的交互作用。首先是相鄰羰基間5σ(CO)→2π(CO)之交互作用,其次是相鄰羰基接受金屬碳鍵σ(M-CO)→2π(CO)之交互作用,兩種作用大小均為3d> 5d~ 4d,而且在第六族過渡金屬羰基錯合物尤其顯著。因此第六族錯合物之CO 2π實驗值之大小趨勢(W>Cr>Mo),可由這兩種交互作用的大小趨勢搭配dπ(M)→2π(CO)之交互作用來解釋。此外,本研究也詳細討論了上述兩種交互作用的情形。
      在M(CO)5X-中,NBO顯示dπ(M)→Ry*(X)之電荷轉移量與E(2)大小趨勢均為Br->Cl->F-,此趨勢與鹵素取代基donate電子至金屬的能力相反,因此抵銷了鹵素配位基在錯合物M(CO)5X-中所預期的效應。M(CO)5X-之特殊的電子方向性亦可由NBO E(2)值來解釋,研究發現dπ-pπ作用力極有利於對位的CO。
    最後,我們也透過NBO來探討W(CO)5PR3穿越效應,我們發現這些錯合物中配位基PR3上苯環與CO 2π的交互作用相當小,相對於其他的donor而言,電子由配位基PR3的苯環donate至CO 2π軌域的電子數目十分有限。

      The NBO results indicate that besides the conventional dπ(M)→2π(CO) donor-acceptor interaction, in the uniform order 3d< 4d < 5d for each group under studies, there are two other significant D-A interaction. Firstly, the 5σ(CO)→2π(CO) indication which reveals the trend 3d>5d~4d. The secondtype interaction, σ(M-C) →2π(CO), which also exhibits the same trend. This trend is partically evident for the 6B group. Therefore, the experimental results observed for the 6B group can be understood as the latter two interactions tend to compatible with the dπ(M)→2π(CO) interaction. The detailed discussion of σ(M-C) →2π(CO) is also presented.
      Analyzed of charge transfer and values of E(2) for the dπ(M)→Ryd(X) interaction in series 2 complexes reveals that the trend of this interaction, Br-> Cl-> F-. This reverse order of the halides’ donor capability, therefore, will counterbalance the expected ligand nature of the three ligands.
      The unusual directionality found for M(CO)5X- can also be explained by the NBO results, In which the dπ-pπ interaction is orientational favored for the trans-CO. It is therefore not surprised that one would find the ligand effect is much more pronounce for the trans-CO than the radial ones.
    Finally, NBO result indicates that the effect through space interaction between CO and benzene on phoshine in W(CO)5PR3 is limited. And, the result and NMR experiments have the same tendency.

    摘要 I 目錄 III 表目錄 IV 圖目錄 V 重要的英文縮寫和其中文譯名 VI 第一章 緒論 1 第二章 理論背景 3 2-1 理論計算 3 2-1.1薛丁格(Schrödinger)波方程式 3 2-1.2分子軌域理論(Molecular orbital theory) 4 2-1.3 基底集合(Basis set) 5 2-1.4 密度泛函理論(Density Functional Theory) 8 2-1.5 NBO分析法 12 2-2 錯合物之鍵結模型 16 2-3 雲散效應(nephelauxetic effect) 19 2-4 NMR偵測金屬羰基錯合物之CO 2π電子雲密度 20 第三章 計算過程及所選擇之計算方法 25 第四章 結果與討論 28 4-1 計算方法之探討 28 4-2金屬羰基錯合物M(CO)6 (M= Cr, Mo, W)之回饋鍵結 30 4-3 M(CO)5X- (M=Cr, Mo, W; X-=F-, Cl-, Br-)金屬回饋鍵之探討 40 4-4 M(CO)5X- (M= Cr, Mo, W; X-= F-, Cl-, Br-)金屬回饋鍵之電子方向性 42 4-5 W(CO)5PR3 (PR3=PphMe2, Pph2Me, Pph3)穿越效應之探討 48 第五章 結論 51 附表 78 參考文獻 84

    1. S. P. Wang, P. Yuan and M. Schwartz; Inorg. Chem., 29, 484(1990)
    2. J. E. Huheey, R. L. Keiter and E. A. Keiter; “Inorganic chemistry: principles of structure and reactivity ”, 4th ed. , New York(1993).
    3. G. Frenking and N. Fröhlich; Chem. Rev., 100, 717(2000).
    4. A. Diefenbach, F. M. Bickelhaupt and G. Frenking; J. Am. Chem. Soc., 122, 6449(2000).
    5. 廖奇泊, 國立成功大學碩士論文(1995).
    6. D. F. Shriver, P. W. Atkins and C. H. Langford, “Inorganic Chemistry”, University Press: Oxford (1990).
    7. (a) K. S. Wang, D. Wang, K. Yang, M. G. Richmond, and M. Schwartz; Inorg. Chem.,34, 3241-3244(1995)
    8. S. P. Wang, M. G. Richmond, and M. Schwartz; J. Am. Chem. Soc., 114, 7595(1992).
    9. 黃明志, 國立成功大學碩士論文(2001).
    10. (a) A. G. Robiette, G. M. Sheldrick, R. N. F. Simpson, B. J. Aylett and J. M. Campbell; J. Organomet. Chem., 14, 279 (1968) (b) A. D. Beny, E. R. Corey, A. P. Hagen, A. G. MacDiarmid, F. E. Saalfeld and B. B. Wayland; J. Am. Chem. Soc., 92, 1940(1970) (c) F. E. Saalfeld, M. V. McDowell and A. G. MacDiarmid; J. Am. Chem. Soc., 92, 2324(1970)
    11. P. Hohenberg , W. Kohn, “Inhomogeneous Electron Gas”, Physical Review, 136, B864(1964).
    12. A. E. Reed, L. A. Curtiss , F. Weinhold; Chem. Rev. , 88, 899(1989).
    13. W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A. Pople; “ab Initio Molecular Orbital Theory”, Canada(1986).
    14. 謝從卿編譯, ”物理化學”,安和出版社, pp896-914(1991).
    15. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations,” Elsevier, New York(1984).
    16. J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids(McGraw-Hill, New York, 1974).
    17. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, 140, A1133(1965).
    18. A. D. Becke, Phys. Rev. A, 38, 3098(1988).
    19. J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy,” Phys. Rev. B, 45, 13244(1992).
    20. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, 37, 785(1988).
    21. R. S. Mulliken; J. Chem. Phys., 23, 1833, 1841, 2338, 2343(1955)
    22. (a)Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951. 18, C79.(b)Chatt, J; Duncanson, L. A. J. Chem. Soc. 1953. 2929.
    23. 張天授等編譯,”無機化學”,六合出版社(1994).
    24. (a)K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds”, Wiley, New York(1986) (b)S. R. Freichs, B. K. Stein and J. Am. Chem. Soc., 109, 5558(1987).
    25. B. Rosenblum and A. H. Nethercot; J. Chem. Phys., 27, 828(1957).
    26. Y. Hsieh, J. C. Koo and E. L. Hahn; Chem. Phys. Lett., 13, 563(1972).
    27. D. F. Shriver, P. W. Atkins and C. H. Langford, “Inorganic Chemistry”, University Press: Oxford , pp.445-446(1990).
    28. F. A. Cotton and C. S. Kraihanzel; J. Am. Chem. Soc., 84, 4432(1962)
    29. P. S. Baterman;”Metal Carbonyl Spectra”, Academic Press, New York(1975)
    30. P. S. Baterman; Structure and Bonding, 26, 1(1976)
    31. J. P. Hickey, J. R. Wilkinson and L. J. Todd; J Organomet. Chem., 179, 159(1979).
    32. (a) G. M. Bodner, S. B. Kahl, K. Bork, B. N. Storhoff, J. E. Wuller and L. J. Todd; Inorg. Chem., 12 1071(1973). (b) G. M. Bodner and L. J. Todd; Inorg. Chem., 13 1335(1974).
    33. W. Buchner and W. A. Schenk; J. Magn. Reson., 48 ,148(1982).
    34. M. Karplus and J. A. Pople; J. Chem. Phys.,38, 2803(1963).
    35. (a) T. P. Das and E. L. Hahn; ”Nuclear Quadrupole Resonance Spectroscopy,” Academic Press, New York(1958). (b) E.A C. Lucken; “ Nuclear Quadrupole Coupling Constants,” Academic Press, New York(1969).
    36. (a)A. G. Redfield; Phys. Rev., 130, 589(1963). (b) R. E. Slusher and E. L. Hahn; Phys. Rev. Lett., 12, C508(1964). (c) R. E. Slusher and E. L. Hahn; Phys. Rev., 166, 332(1968)
    37. W. T. Huntress; Adv. Magn. Reson., 4, 1(1970).
    38. R. T. Boere and R. G. Kidd; Ann. Repts. NMR Spectrosc., 13, 319(1982).
    39. B. Halle, T. Anderson, S. Forsen and B. Lindman; J. Am. Chem. Soc., 103, 500(1981).
    40. (a) P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985). (b) W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985). (c) P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
    41. A. Jost and B. Ree; Acta Crystallogy. , B31, 2649(1975)
    42. G. Herzberg; Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules; Krieger: Malabar(1989).
    43. Topics in Current Chemistry; Nalewajski, R. F., Ed.; Springer-Verlag, Berlin, Vols. 180-183(1996).
    44. Density Functional Methods in Chemistry; Labanowski, J., Andzelm, J., Eds.; Springer-Verlag: Heidelberg(1991).
    45. T. Ziegler;Chem. Rev., 91, 651(1991).
    46. R. G. Parr and W. Yang; Density Functional Theory of Atoms and Molecules; Oxford University Press, New York(1988).
    47. A.W. Ehlers, S. Dapprich, S. F. Vyboishchikov and G. Frenking; Organometallics., 15, 105(1996).
    48. K. Mogi, Y. Sakai, T. Sonoda, Q. Xu and Y. Souma; J. Phys. Chem. A, 107, 3812(2003)
    49. T. Ziegler, V. Tschinke and C. Ursenbach; J. Am. Chem. Soc., 109, 4825(1987).
    50. J. Uddin, C. Boehme and Frenking; Organometallics., 19, 571(2000).
    51. S. Dapprich, G Frenking; J. Phys. Chem., 99, 9352(1995)
    52. (a) K. L. Kunze and E. R. Davidson; J. Phys. Chem., 96, 2129(1992). (b) F. C. Machado and E. R. Davidson; J. Phys. Chem., 97, 4397(1993).
    53. R. F. Fenske, K.G. Caulton, D. D. Radtka and C. C. Sweeney; Inorg. Chem, 5, 960(1966)
    54. R. A. Brown and G. R. Dobson; Inorg. Chim. Acta ., 6, 65(1972).
    55. R. F. Fenske and R. L. Dekock; Inorg. Chem., 9, 1053(1970).
    56. M. B. Hall and R. F. Fenske; Inorg. Chem., 11, 1619(1972).
    57. (a) G. M. Bodner, S . B. Kahl, K. Bork, B. N. Storhoff, J. E. Wuller and L. J. Todd; Inorg. Chem., 12, 1071.(1973) (b) L. H. Jones; In Advances in the Chemistry of the Coordination Compounds: Kirschner, S., Ed.; Macmillan Press: New York, 1961; pp 398-411. (c) P. S. Braterman; Metal Carbonyl Spectra; Academic Press, New York(1975).

    下載圖示 校內:2005-06-24公開
    校外:2007-06-24公開
    QR CODE