| 研究生: |
邱文元 Yuan, Chiu-Wen |
|---|---|
| 論文名稱: |
壓電曲樑承受移動負載之動態響應分析 Dynamic Response of Curved Piezoelectric Beam Subjected to a Moving Load |
| 指導教授: |
王榮泰
Wang, Rong-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 壓電曲樑 、移動負載 、模態法 |
| 外文關鍵詞: | Curved piezoelectric beam, Moving load, Model analysis method |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討貼附有壓電片Timoshenko曲樑之動態分析,將壓電材料貼附在整體結構的第二跨距下方,採用模態法計算自然頻率變化並探討此結構受移動負載之動態響應及電荷收集的情形。
利用應力場和應變場推導出此壓電曲樑之應變能項與動能項,再以漢米爾頓原理得出結構樑之運動方程式。
模態法則是將運動方程式中的雙變數函數拆成兩個單變數函數求解出位移函數,配合邊界條件計算出力場函數,進而求解結構自然頻率,並討論在不同的幾何參數下對模態頻率的影響。
動態分析則是以模態法作為基礎,施加一個移動負載,探討改變結構及壓電片幾何條件對整體樑的自由端位移變化以及壓電片收集電荷情形。
The purpose of this thesis is to study the dynamic responses of a curved beam,which has a piezoelectric sheet mounted on the bottom surface. The Timoshenko theory is adopted in this study. The lower layer of the second span is a piezoelectric sheet. The displacement and rotation of all components of the entire beam are set. The displacements, stresses, strains, electric field and electric displacements are used to derive strain energy, kinetic energy. The governing equations and the corresponding boundary condition are derived via the Hamilton’s principle. The natural frequencies are obtained by analytical method. Dynamic analysis is based on the modal analysis method. The method is presented to obtain the dynamic responses of the entire beam induced by a load moving on the beam. The effects of traveling velocity of the load and the geometric parameters of the beam on both histories of the displacement of the beam and the electric charge accumulation on the piezoelectric surfaces are investigated.
1. A. E. H. Love, A Treatist on the mathematical theory of Elasticity,
4thEdn. Dover,New York, 1944
2. I. U. Ojalvo, “Coupled twist-bending vibrations of incomplete
Elastic rings,” Interrational Journal of Mechanical Sciences, Vol 4,
pp.53-72,1962
3. J. P. Den Hartog, Mecahanical Vibrations, 4th Edn. MaGraw-Hill,
New York, 1956
4. E. Volerra and J. D. Morrel, “Lowest natural frequency of elastic
Hinged arcs,” Journal of the Acoustical Society of America, Vol 33,
pp. 1787-1790,1961
5. E. Volerra and J. D. Morrel, “Lowest natural frequency of elastic arc
For vibrations outside the palne of initial curvature,” Journal of
Applied Mechanics, Vol 28, pp.624-627,1961
6. Volterra, E. and Gaines, J. H., Advanced strength of materials, Prentice-Hill, Inc., Englewood Cliffs, N.J ., 1971.
7. S. S. Rao, “Effects of transverse shear and rotatory inertia on the coupled twist-bending vibrations of circular rings,” Journal of Sound and Vibration,Vol. 16, pp.551-566, 1971.
8. D. E. Panayotounakos and P. S. Theocaris, “The dynamically loaded circular beam on an elastic foundation,” Journal of Applied of Applied Mechanics,Vol. 47, PP. 139-144, 1980
9. Silva, Julio M.M. and Urgueira, Antonio P. V., “Out-of-plane dynamic response of curved beams an analytical model,” International Journal of Solid and Structures, Vol.24,No. 3, pp.271-284, 1988.
10. G. E. Martin, “Derermination of equivalent-circuit constants of piezoelectric resonators of moderately low Q by absolute-admittance measurements,” The Journal of the Acoustic Society of America, Vol.26, No.3, pp. 413-420, May 1954.
11. G. Bradfield, “Ultrasonic transducers 1. Introduction transducers. Part A,” Ultrasonics, pp. 112-123, 1970.
12. H. S. Tzou, and G. C. Wang, “Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator,” Composite and Structures, Vol. 35, pp. 669-667, 1990.
13. X. Q. Peng, K. Y. Lam, and G. R. Liu,“Active vibration control of composite beam with piezoelectrics: a finite element model with third order theory,”Journal of Sound and Vibrational, Vol. 209, pp. 635-650, 1998.
14. H. Abramovich, and A. Livshits, “Dynamic behavior of cross-plylaminated beams with piezoelectric actuators,” Composite Structures. Vol. 25, pp. 371-379, 1993.
15. Z. Chaudhry and C. A. Rogers, “Enhanced structural contral with discretely attached induced strain actuators,” Transaction of the ASME, Journal of Mechanical Design, Vol. 115, pp. 718-722, 1993.
16. K. Koga and H. Ohigashi, “Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers,” Journal of Applied Physics, Vol. 59, pp. 2142-2150, March 1986.
17. C. K. Lee, “Laminated piezopolymer plates for torsion and bending sensors and actuators,” Journal of the Acoustical Society of America, Vol. 85, pp. 2432-2439, 1989.
18. C. Q. Chen, X. M. Wamg and Y. P. Shen, “Finite element approach of vibration control using self-sensing piezoelectric actuators,” Computers and Structures, Vol. 60, No. 3,pp. 505-512, 1996.
19. S. K. Ha, C. Keilers, and F. K. Chang, “Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators,” AIAA Journal,Vol. 30, pp. 772-780, 1992.
20. A. Benjeddou, M. A. Trindade, and R. Ohayon, “New Shear Actuated Smart Structure Beam Finite Element,” AIAA Journal,Vol. 37, pp. 378-383, 1999.
21. D. H. Robbins, and J. N. Reddy, “Analysis of piezoelectrically actuated beams using a layer-wise displacement theory,” Computers and Structures, Vol. 41, no. 2. pp. 265-279, 1991.
22. E. F. Crawley, and J. de Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal,Vol. 25, No. 10, pp. 1373-1385, 1987.
23. X. Y. Ye, Z. Y. Zhou, Y. Yang, J. H. Zhang, and J. Yao, “Determinaation of the mechanical properties of microstructures,” Sensors and Actuators, A54, pp. 750-754, 1996.
24. J. G. Smits, and W. S. Choi, “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 38, no. 3, pp. 256-270, 1991.
25. S. Im, and S. N. Atluri, “Effects of piezo-actuator on a finitely deformed beam subjected to general loading,” AIAA Journal, Vol. 27, pp. 1801-1807, 1989.
26. D. Certon, O. Casula, F. Patat, and D. Royer, “Theoretical and experimental investigations of lateral modes in 1-3 piezocompsites,” Ultrasonics, Ferroelectrics and Frequency
27. H. Abramovich, and A. Livshits, “Dynamic behavior of cross-plylaminated beams with piezoelectric layers,” Computer Structures, Vol. 25, pp. 371-379, 1993.
28. H. S. Tzou, and C. I. Tseng, “Distributed vibration control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulatino and Application,” Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 215-231, 1991.
29. 鄭志麟, “應用有限元素法於T形Timoshenko架構結構承受移動負載作用下所呈現的動態響應分析,” 成功大學工程科學系碩士論文, 1995.
30. 楊鎮謙, “T形Timoshenko架構結構承受移動負載作用下所呈現的動態響應分析,” 成功大學工程科學系碩士論文, 1995.
31. T. Yoshimura, J. Hino and N. Ananthanarayana(1986), “Vibration analysis of nonlinear beam subjected to moving loads by use Galerkin method,” Journal of Sound and Vibration, vol. 104, pp. 179-186.
32. Olsson, M. (1991), “On the fundamental moving load problem,” Journal of Sound and Vibration, vol. 145, pp. 299-307.
33. Wang, R. T. and Lin, J. S. (1998), “Vibration of T-type Timoshenko frames subjected to moving load,” Journal of Structural Engineering and Mechanics, vol. 6, pp. 229-243.
34. 許佳順, “具有壓電材料之複合層曲樑振動分析,” 成功大學工程科學系碩士論文, 2006.
35. 吳尚軒, “具有貼附式壓電材料的複合曲樑受熱-負載-電壓作用之結構分析,” 成功大學工程科學系碩士論文, 2009.
36. 朱桓頡, “具有壓電材料之曲樑的運動與電壓耦合分析,” 成功大學工程科學系碩士論文, 2013.
校內:2021-08-30公開