簡易檢索 / 詳目顯示

研究生: 林朝義
Lin, Chao-Yi
論文名稱: 表面前處理對304L不銹鋼塵化性質影響之研究
Effect of Surface Pre-treatment on Metal Dusting Behavior of 304L Stainless Steel
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 177
中文關鍵詞: 蝕孔金屬塵化高溫腐蝕不銹鋼
外文關鍵詞: metal dusting, high temperature corrosion, stainless steel, pitting
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

      不銹鋼材料在高溫及高碳勢的環境下,可能發生金屬塵化,進而引起局部薄化或穿孔的現象。材料發生塵化的敏感性與表面是否生成具有保護性的鈍化膜有密切的關係。而不同的表面狀態(例如:表面加工、表面氧化、表面滲碳等)是否會影響塵化的現象,乃成為一有意義的課題。本研究針對304L不銹鋼經過研磨、噴砂及預氧化等方式的表面處理後,探討其在高碳勢的CO-CO2混合氣氛中的塵化敏感性之差異。另以預滲碳處理(包覆滲碳法)進行不銹鋼的表面滲碳,藉以探討表面奈米碳絲的生成與塵化發生的關係,和滲碳後對塵化之影響。

      實驗結果顯示,經研磨、噴砂及預氧化處理後的304L不銹鋼三者試片,在熱重分析試驗後,其試片表面均無任何局部蝕孔的形成,其重量增加量均隨試驗溫度的升高而增加,且其重量增加量與時間皆呈線性關係,其試片重量增加主要是由表面碳沉積以及少部份由高溫氧化反應所造成。在長時間暴露試驗後,經研磨或噴砂處理後的不銹鋼其表面均可形成富鉻的氧化物銹皮,因而延緩塵化反應的發生。其中經噴砂處理者其表層氧化物生成的厚度較經研磨處理者為厚,對塵化有較佳的抑制性。而經預氧化處理後的304L不銹鋼,其原先的表面氧化銹皮容易產生破裂,且該破裂處下方基材為富鐵鎳金屬相,對碳的吸收相較於其它位置較敏感,故易遭受到金屬塵化侵蝕而破壞。局部侵蝕處其反應層內由三層不同的結構區域所形成,包括最外層的氧化物/金屬微粒複合層、中間層的石墨/氧化物/金屬微粒混合層以及最內層的內部氧化層等。經預氧化處理後的304L不銹鋼,其試片表面的局部侵蝕處數量、平均的最大侵蝕寬度和深度均隨試驗溫度的升高而增加。

      304L不銹鋼在經預滲碳處理後,可造成其表層富鉻氧化物銹皮的生成,同時在表層銹皮下方可形成一滲碳的富鐵鎳金屬層(鉻缺乏)。在經熱重分析試驗後,實驗結果顯示,經預滲碳處理後的不銹鋼表面,無論是經保留銹皮或移除銹皮後,其重量增加量均隨溫度的升高而增加,其中移除銹皮後的試片其重量增加量均較大。試驗後,兩者試片均可發現其表面奈米碳絲的形成,且碳絲的端頭均富含鐵及鎳元素的金屬微粒,另在其生成位置的橫截面金相觀察與成份分析結果中,均顯現合金元素重整的情形,亦即該位置發生初期的金屬塵化反應。在經長時間暴露試驗後其結果顯示,預先經滲碳處理的確有加速不銹鋼塵化侵蝕破壞的作用。經預滲碳處理後的不銹鋼,在原先表面部份銹皮破裂處,將快速地達到碳過飽和而遭受塵化的侵蝕,即在熱重分析試驗結果中已呈現塵化初期的現象,在經長時間暴露試驗結果則有相當明顯凹陷的局部性蝕孔生成,其蝕孔數量、平均的最大侵蝕寬度和深度均隨溫度的升高而增加;而經過預滲碳處理後的不銹鋼,若將其表層的氧化物研磨除去後,則試片表面幾乎發生全面性的塵化現象。

    Abstract

      Stainless steels (SSs) could induce metal dusting damage and even lead the occurrence of the localized thinning/pitting phenomenon when they are exposed in high carbon-activity atmospheres at elevated temperatures. The relationship between the susceptibility to metal dusting of material and the surface to form the protective passive film is rather close. The surface state (eg. surface working, surface oxidation, and surface carburizing) of material on the susceptibility to metal dusting becomes the meaningful topic. In this investigation, the effect of surface pre-treatment (grinding. sand-blasting, and pre-oxidation) on the susceptibility to metal dusting of 304L SS was examined. Moremore, the pre-carburization treatment is expected to help the progress of carburizing on 304L SS. The process of metal dusting occurrence and nano-sized carbon filaments formation on 304L SS was investigated. The effect of carburizing for 304L SS on metal dusting was also examined. Consequently, the effect of surface pre-treatment on metal dusting susceptibility for 304L SS exposed in CO-CO2 atmosphere was investigated in this study.

      For the as-ground, sand-blasted, and pre-oxidized 304L SS, the results showed that no localized pit was formed on specimen surface after TGA tests. A linear relationship of weight gain versus time was obtained for all specimens, and the weight gain increased with increasing temperature. More specifically, the decomposition of CO gas to form carbon was mainly responsible for the weight gain, and the contribution to the weight gain due to oxidation could not be ruled out. The as-ground and sand-blasted surfaces enhance the formation of oxide scale after long-term exposure. A thicker Cr-rich oxide layer was found and showed a significant resistance to metal dusting on 304L SS with the sand-blasted surface. The existence of an initial non-protective oxide on the pre-oxidized 304L SS surface, however, gave rise to the most susceptibility to metal dusting associated with localized attack. The Fe/Ni-rich metallic phase beneath the site of oxide breakdown was responsible to metal dusting attack. The direct carbon ingress could more easily induce the occurrence of metal dusting. The internal reaction layer of localized pitting site existed three different structure zones consisting of an outer oxide/metal composite layer, an intermediate graphite/oxide/metallic particle mixture, and an inner internal-oxidation layer. The number, average maximum width, and maximum depth of the localized pitting site observed on the pre-oxidized 304L SS were increased with increasing temperature.

      The pre-carburization was performed using the pack-cementation process which gave rise to the formation of Cr-rich oxide scale on the 304L SS surface. On top of the metal surface, a carbon-rich metallic layer was produced (chromium depletion) beneath the oxide scale. The TGA experimental results showed a linear relationship of weight gain versus time was obtained for the pre-carburized 304L SS (reserved and descaled), and the weight gain increased as the temperature increased. Metal dusting associated with alloying element redistribution and Fe/Ni-rich particle formation could occur on the pre-carburized 304L SS. The results showed that the Fe/Ni-rich metal particles disintegrated from the substrate could promote the formation of nano-sized carbon filaments in the high carbon-activity atmosphere. It indicated that the formation of carbon filaments resulting from the initial stage of metal dusting was occurred. Pre-carburization treatment on SS could accelerate the damage from metal-dusting attack. After long-term exposure, the pitting with localized damage was formed distinctly on the pre-carburized 304 SS surface due to the metal dusting attack. The total number, average maximum width, and maximum depth of the attacked localized pit increased with increasing temperature. Moreover, uniform attack due to metal dusting occurrence was seen if the oxide scale formed on the pre-carburized 304 SS surface was removed by grinding.

    總 目 錄 中文摘要........................................................................I 英文摘要........................................................................V 誌謝 總目錄.........................................................................IX 表目錄...................................................................... XIII 圖目錄.........................................................................XV 第一章、前言....................................................................1 第二章、相關文獻及理論基礎......................................................4 2-1金屬塵化.............................................................4 2-2塵化機制.............................................................5 2-2-1鐵及低合金鋼....................................................5 2-2-2高合金鋼………………………………………………....7 2-3表面碳沉積……………………………………………………...8 2-4氣氛化性與熱力學………………………………………….......9 2-5表面前處理……………………………………………...……...11 2-5-1研磨及噴砂處理……………………………………...…11 2-5-2預氧化處理……………………………………………...11 2-5-3預滲碳處理…………………………………….……..…12 2-6高溫氧化……………………………………………………….13 2-7內部碳化……………………………………………………….15 第三章、實驗方法與步驟………………………………………………….26 3-1實驗材料……………………………………………………….26 3-2前處理準備…………………………………………………….26 3-3前處理試片分析…………………………………………...…..28 3-3-1表面及橫截面觀察與分析…………………………..….28 3-3-2結構分析…………………………………………….......29 3-4熱重分析試驗………………………………...………………..29 3-5長時間暴露試驗……………………………………………….30 3-6試驗後試片分析…………………………………………...…..31 3-6-1表面形態觀察與成份分析…………...…………………31 3-6-2表面生成物結構分析…………………………………...31 3-6-3橫截面之顯微組織觀察與成份分析…………………...32 3-6-4蝕孔內部物質分析…………………………….......……33 第四章、研磨、噴砂及預氧化處理對304L不銹鋼塵化性質影響………....42 4-1前處理試片分析結果………………………………………….42 4-1-1表面及橫截面觀察與分析…………………………...…42 4-1-2結構分析…………………………...……………………43 4-2熱重分析試驗結果………………………………………...…..43 4-2-1重量變化曲線…………………………………...………43 4-2-2表面形態觀察與成份分析……………………………...44 4-2-3表面生成物結構分析………………………..………….46 4-2-4橫截面之顯微組織觀察……………………………...…47 4-3長時間暴露試驗結果……………………………………….....63 4-3-1表面形態觀察與成份分析…………………….………..63 4-3-2橫截面之顯微組織觀察與成份分析………………...…82 4-3-3蝕孔內部物質分析………………………………..…….87 4-4結論………………………………………………………...…..91 第五章、預滲碳處理對304L不銹鋼塵化性質影響…………….......…….106 5-1預滲碳處理結果………………………………………...……106 5-1-1表面及橫截面觀察與分析…………………………….106 5-1-2結構分析………………………….……………………107 5-2熱重分析試驗結果………………………………...…………108 5-2-1重量變化曲線………………………………………….108 5-2-2表面形態觀察與成份分析…………………………….109 5-2-3表面生成物結構分析………………………………….111 5-2-4橫截面之顯微組織觀察與成份分析……………….....112 5-2-5 碳絲TEM觀察與分析………………..………...….....114 5-3長時間暴露試驗結果………………………………….……...116 5-3-1表面形態觀察與成份分析………………………….…116 5-3-2橫截面之顯微組織觀察與成份分析……………….…137 5-3-3蝕孔內部物質分析…………………………………….139 5-4結論………………………………………………………..….143 第六章、總結論…………………………………………………………….165 參考文獻………………………………………………………...…………168 自述……………………………………………...…………………………179

    參 考 文 獻

    1. W. B. Hoyt, R. H. Caughey, “High Temperature Metal Deterioration in Atmospheres Containing Carbon-Monoxide and Hydrogen”, Corrosion, Vol. 15, pp. 627t-630t, 1959.
    2. P. A. Lefrancois, W. B. Hoyt, “Chemical Thermodynamics of High Temperature Reactions in Metal Dusting Corrosion”, Corrosion, Vol. 19, No. 10, pp. 360t-368t, 1963.
    3. R. C. Schueler, “Metal Dusting”, Hydrocarbon Processing, August, pp. 73-75, 1972.
    4. R. F. Hochman, “Basic Studies of Metal Deterioration (“Metal Dusting”) in Carbonaceous Environments at Elevated Temperatures”, Proc. of the 4th International Congress Metal Corrosion, ed. N. E. Hammer (Houston, TX, NACE, 1972), pp.258-263, 1972.
    5. R. F. Hochman, “Catastrophic Deterioration of High Temperature Alloys in Carbonaceous Atmospheres”, Proc. Symp. High-Temperature Alloys with Emphasis on Environmental Effects, eds. Z. A. Foroulis, F. S. Pettit (Pennington, NJ, The Electrochemical Society), pp. 715-732, 1977.
    6. R. L. Colwell, “Gaseous Corrosion of a Heat-Resistant Alloy (Metal Dusting)”, Handbook of Case Histories in Failure Analysis, Vol. 1, ed. K. A. Esaklul (ASM, OH, USA, 1992), pp.351-353, 1992.
    7. H. J. Grabke, R. Krajak, J. C. Nava Paz, “On the Mechanism of Catastrophic carburization: ‘Metal Dusting’”, Corrosion Science, Vol. 35, Nos. 5-8, pp. 1141-1150, 1993.
    8. G. M. Tanner, “Metal Dusting (Catastrophic Carburization) of a Waste Heat Boiler Tube”, Engineering Failure Analysis, Vol. 1, No. 4, pp. 289-306, 1994.
    9. R. J. Gommans, T. L. Huurdeman, “Experience with Metal Dusting in Was-
    te Heat Boilers”, Ammonia Technical Manual (Ammonia Plant Safety & Related Facilities), Vol. 35, pp. 145-162, 1995.
    10. T. Shibasaki, K. Takemura, T. Mohri, H. Hashimoto, “Experience with Metal Dusting in H2/CO/CO2/H2O Atmosphere”, Ammonia Technical Manual (Ammonia Plant Safety & Related Facilities), Vol. 36, pp. 165-179, 1996.
    11. H. Stahl, S. G. Thomsen, “Survey of Worldwide Experience with Metal Dusting”, Ammonia Technical Manual (Ammonia Plant Safety & Related Facilities), Vol. 36, pp. 180-191, 1996.
    12. M. L. Holland, H. J. de Bruyn, “Metal Dusting Failures in Methane Reforming Plant”, The International Journal of Pressure Vessels and Piping, Vol. 66, Issue. 1-4, pp. 125-133, 1996.
    13. M. H. Ravestein, “Metal Dusting in Catalytic Reforming Furnace Tubes”, Paper No. 496, March 9-14, 1997, NACE, New Orleans, LA, USA.
    14. K. L. Baumert, J. J. Hoffman, “Materials Experience in Methanol Reforming Units”, Materials Performance, Vol. 37, No. 5, pp. 60-64, 1998.
    15. F. Dettenwanger, D. Grotmann, H. Friedrich, E. Berghof-Hasselbächer, M. Schorr, M. Schütze, “Damage of a Heat-Treatment Retort by Metal Dusting Attack”, Materials and Corrosion, Vol. 50, pp. 289-293, 1999.
    16. D. C. Agarwal, U. Brill, “Performance of Alloy 602CA (UNS N06025) in High Temperature Environments up to 1200℃”, Paper No. 00521, March 26-31, 2000, NACE, Orlando, FL, USA.
    17. T. Lant, A. B. Tomkings, “Operating Experience of Metal Dusting Failures”, Paper No. 01378, March 11-16, 2001, NACE, Houston, TX, USA.
    18. J. C. Nava Paz, H. J. Grabke, “Metal Dusting”, Oxidation of Metals, Vol.
    39, Nos. 5/6, pp. 437-456, 1993.
    19. H. J. Grabke, R. Krajak, E. M. Müller-Lorenz, “Metal Dusting of High Temperature Alloys”, Werkstoffe und Korrosion, Vol. 44, pp. 89-97, 1993.
    20. H. J. Grabke, R. Krajak, E. M. Müller-Lorenz, S. Strauβ, “Metal Dusting of Nickel-base Alloys”, Materials and Corrosion, Vol. 47, pp. 495-504, 1996.
    21. D. L. Klarstrom, H. J. Grabke, L. D. Paul, “The Metal Dusting Behavior of Several High Temperature Nickel Based Alloys”, Paper No. 01379, March 11-16, 2001, NACE, Houston, TX, USA.
    22. H. J. Grabke, H. P. Martinz, E. M. Müller-Lorenz, “Metal Dusting Resistance of High Chromium Alloys”, Materials and Corrosion, Vol. 54, No. 11, pp. 860-863, 2003.
    23. C. M. Chun, J. D. Mumford, T. A. Ramanarayanan, “Metal Dusting Corrosion of Cobalt”, Journal of The Electrochemical Society, Vol. 150, No. 2, pp. B76-B82, 2003.
    24. R. T. Jones, K. L. Baumert, “Metal Dusting-an Overview of Current Literature”, Paper No. 01372, March 11-16, 2001, NACE, Houston, TX, USA.
    25. H. J. Grabke, E. M. Müller-Lorenz, “Protection of High Alloy Steels Against Metal Dusting by Oxide Scales”, Materials and Corrosion, Vol. 49, pp. 317-320, 1998.
    26. H. J. Grabke, E. M. Müller-Lorenz, B. Eltester and M. Lucas, “Formation of Chromium Rich Oxide Scales for Protection Against Metal Dusting”, Materials at High Temperatures, Vol. 17, No. 2, pp. 339-345, 2000.
    27. H. J. Grabke, E. M. Müller-Lorenz, S. Strauss, E. Pippel, and J. Woltersd-
    orf, “Effects of Grain Size, Cold Working, and Surface Finish on Metal-Dusting Resistance of Steels”, Oxidation of Metals, Vol. 50, Nos. 3/4, pp. 241-254, 1998.
    28. E. M. Müller-Lorenz, H. J. Grabke, “Metal Dusting Exposures of Modified Stainless Steels”, Materials Science Forum, Vols. 369-372, pp. 955-962, 2001.
    29. H. J. Grabke, E. M. Müller-Lorenz, “Occurrence and Prevention of Metal Dusting on Stainless Steels”, No. 01373, March 11-16, 2001, NACE, Houston, TX, USA.
    30. E. M. Müller-Lorenz, S. Strauβ, and H. J. Grabke, “Effects of Surface State, Microstructure and Alloying Additions on the Metal Dusting Resistance of High Alloy Steels”, No. 24, EURRCCORR 98, The European Corrosion Congress, Sept. 28-Oct. 1, 1998, Utrecht, The Nertherlands.
    31. H. J. Grabke, “Corrosion by Carbonaceous Gases, Carburization and Metal Dusting, and Methods of Prevention”, Materials at High Temperatures, Vol. 17, No. 4, pp. 483-487, 2000.
    32. F. H. Stott, G. C. Wood, J. Stringer, “Influence of Alloying Elements on the Development and Maintenance of Protective Scales”, Oxidation of Metals, Vol. 44, No. 1-2, pp. 113-122, 1995.
    33. 謝政翰,“鑄鋼及沃斯田體不銹鋼在不同氧分壓下之高溫氧化性質研究”, 碩士論文, 國立成功大學材料科學及工程學系, 1998.
    34. D. Monceau, E. M. Müller-Lorenz, H. J. Grabke, “Metal Dusting of Stainless Steels”, Materials Science Forum, Vols. 251-254, pp. 665-670, 1997.
    35. A. G. Gray, “Carburizing and Carbonitriding”, American Society for Metals, Metals Park, Ohio, pp. 179-186, 1977.
    36. M. J. Bennett, “Carbon Deposition: a Major Technological Problem”, Materials and Corrosion, Vol. 49, pp. 345-351, 1998.
    37. J. L. Figueiredo, “Carbon Deposition Leading to Filament Growth on Metals”, Materials and Corrosion, Vol. 49, pp. 373-377, 1998.
    38. B. Schmid, Ø. Grong, R. Ødegård, “Coke Formation in Metal Dusting Experiments”, Materials and Corrosion, Vol. 50, pp. 647-653, 1999.
    39. E. Q. Camp, C. Phillips, L. Gross, “Corrosion of 18-8 Alloy Furnace Tubes in High-Temperature Vapor Phase Cracking Service”, Corrosion, Vol. 1, No. 3, pp. 149-160, 1945.
    40. H. J. Grabke, C. B. Bracho-Troconis, E. M. Müller-Lorenz, “Metal Dusting of Low Alloy Steels”, Werkstoffe und Korrosion, Vol. 45, pp. 215-221, 1994.
    41. H. J. Grabke, “Metal Dusting of Low- and High-Alloy Steels”, Corrosion, Vol. 51, No.9, pp. 711-720, 1995.
    42. H. J. Grabke, “Mechanisms of Metal Dusting of Low and High Alloy Steels”, Solid State Phenomena, Vol. 41, pp. 3-16, 1995.
    43. H. J. Grabke, “Thermodynamics, Mechanisms and Kinetics of Metal Dusting”, Materials and Corrosion, Vol. 49, pp. 303-308, 1998.
    44. A. S. Fabiszewski, W. R. Watkins, J. J. Hoffman, S. W. Dean, “The Effects of Temperature and Gas Composition on the Metal Dusting Susceptibility of Various Alloys”, Paper No. 00532, March 26-31, 2000, NACE, Orlando, FL, USA.
    45. H. J. de Bruyn. E. H. Edwin, S. Brendryen, “Apparent Influence of Steam on Metal Dusting”, Paper No. 01383, March 11-16, 2001, NACE, Houston, TX, USA.
    46. T. P. Levi, N. Briggs, I. E. Minchington, C. W. Thomas, “A Study of the Relationship Between Metal Dusting and Pressure”, Paper No. 01375, March 11-16, 2001, NACE, Houston, TX, USA.
    47. T. P. Levi, N. Briggs, I. E. Minchington, C. W. Thomas, “Metal Dusting of Type 316 Stainless Steel in High Pressure Environments Between 450℃ and 600℃”, Materials and Corrosion, Vol. 53, pp. 239-246, 2002.
    48. E. Pippel, J. Woltersdorf, H. J. Grabke, S. Strauβ, “Microprocesses of Metal Dusting on Iron”, Steel Research, Vol. 66, No. 5, pp. 217-221, 1995.
    49. J. Galuszka, M. H. Back, “Iron Surface Morphology Factor in the Growth of Filamentous Carbon”, Carbon, Vol. 22, No. 2, pp. 141-145, 1984.
    50. R. T. Yang, J. P. Chen, “Mechanism of Carbon Filament Growth on Metal Catalysts”, Journal of Catalysis, Vol. 115, pp. 52-64, 1989.
    51. R. T. K. Baker, “Catalytic Growth of Carbon Filaments”, Carbon, Vol. 27, Vol. 3, pp. 315-323, 1989.
    52. C. M. Chun, T. A. Ramanarayanan, J. D. Mumford, “Relationship Between Coking and Metal Dusting”, Materials and Corrosion, Vol. 50, pp. 634-639, 1999.
    53. B. Schmid, N. Aas, Ø. Grong, R. Ødegård, “In Situ Environmental Scaning Electron Microscope Observations of Catalytic Processes Encountered in Metal Dusting Corrosion on Iron and Nickel”, Applied Catalysis A : General, Vol. 215, pp. 257-270, 2001.
    54. S. Tokura, N. Otsuka, T. Kudo,”Coke Formation on Preoxidized Iron and Nickel in a CH4-H2 Gas Atmosphere at 1000℃”, Corrosion, Vol. 49, No. 7, pp. 561-568, 1993.
    55. C. Steurbaut, H. J. Grabke, D. Stobbe, F. R. van Buren, S. J. Korf, J. Defrancq, “Kinetic Studies of Coke Formation and Removal on HP40 in Cycled Atmospheres at High Temperatures”, Materials and Corrosion, Vol. 49, pp. 352-359, 1998.
    56. H. J. Grabke, “Coking Caused by Fine Metal Particles From Oxide Reduction”, Materials and Corrosion, Vol. 50, pp. 673-674, 1999.
    57. P. J. Nolan, P. Banks, S. K. Lister, “The Carburisation of Fe-Cr Alloys and Steels in CO/CO2 Environments”, Pro. Conf. On Behavior of Temperature Alloys in Aggressive Environments, Petten, The Netherlands, Oct. 5-9, pp. 705-718, 1979.
    58. B. A. Baker, G. D. Smith, “Metal Dusting Behavior of High-temperature Alloys”, Paper No. 54, April 25-30, 1999, NACE, San Antonio, TX, USA.
    59. A. Vaughan, A. Ball, “An Experimental Investigation of Metal Dusting”, 14th ICC, Paper No. 17, Sept. 26-Oct. 1, Cape Town, South Africa, 1999.
    60. A. Schneider, “Iron Layer Formation During Cementite Decomposition in Carburising Atmospheres”, Corrosion Science, Vol. 44, pp. 2353-2365, 2002.
    61. J. Zhang, A. Schneider, G. Inden, “Effect of Gas Composition on Cementite Decomposition and Coke Formation on Iron”, Corrosion Science, Vol. 45, pp. 281-299, 2003.
    62. T. A. Ramanarayanan, R. Petkovic-Luton, “A Study of High Temperature Carburization and its Correlation with the Creep-Rupture Properties of a 30Cr/30Ni Austenitic Steel”, Vol. 37, No. 12, pp. 712-721, 1981.
    63. K. Yoshikawa, Y. Sawaragi, J. Muurayama, N. Fujino, “The Relation between Carburization Resistance and Surface Oxide Film of Heat Resistant Steels for Petro-chemical Plants”, The Sumitomo Search, No. 33, pp. 45-52, 1986.
    64. D. A. Jones, Principles and Prevention of Corrosion, Macmillan Publishing Company, New York, USA, 1992.
    65. D. R. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd ed., Mcgraw-Hill, 1983.
    66. N. Birks, G. H. Meier, Introduction to High Temperature Oxidation of Metals, Edward Amold, Pittsburgh, 1982.
    67. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London and New York, 1988.
    68. G. M. Smith, D. J. Young, D. L. Trimm, “Carburization Kinetics of Heat-Resistant Steels”, Oxidation of Metals, Vol. 18, Nos. 5/6, pp. 229-243, 1982.
    69. T. A. Ramanarayanan, D. J. Srolovitz, “Carburization Mechanisms of High Chromium Alloys”, Journal of Electrochemical Society, September, pp. 2268-2274, 1985.
    70. H. J. Grabke, I. Wolf, “Carburization and Oxidation”, Materials Science and Engineering, Vol. 87, pp. 23-33, 1987.
    71. T. A. Ramanarayanan, R. A. Petkovic, J. D. Mumford, A. Ozekcin, “Carburization of High Chromium Alloys”, Materials and Corrosion, Vol. 49, pp. 226-230, 1998.
    72. S. Forseth, P. Kofstad, “Metal Dusting Phenomenon During Carburization
    of FeNiCr-alloys at 850-1000℃”, Materials and Corrosion, Vol. 46, pp. 201-206, 1995.
    73. J. A. Colwell, R. A. Rapp, “Reactions of Fe-Cr and Ni-Cr Alloys in CO/CO2 Gases at 850 and 950℃”, Metallurgical Transactions A, Vol. 17, June, pp. 1065-1074, 1986.
    74. R. Petkovic-Luton, T. A. Ramanarayanan, “Mixed-Oxidant Attack of High-Temperature Alloys in Carbon- and Oxygen- Containing Environments”, Oxidation of Metals, Vol. 34, Nos. 5/6, pp.381-400, 1990.
    75. P. Szakalos, R. Pettersson, S. Hertzman, “An Active Corrosion Mechanism for Metal Dusting on 304L Stainless Steel”, Corrosion Science, Vol. 44, pp. 2253-2270, 2002.
    76. M. Hänsel, C. A. Boddington, D. J. Young, “Internal Oxidation and Carburization of Heat-Resistant Alloys”, Corrosion Science, Vol. 45, pp. 967-981, 2003.
    77. P. L. Hemmings, R. A. Perkins, “Thermodynamic of Phase Stability Diagrams for the Analysis of Corrosion Reactions in Coal Gasification/Combustion Atmospheres”, Report FP-539, Electric Power Research Institute, Palo Alto, CA, Dec. 1977.
    78. S. Leistikow, I. Wolf, H. J. Grabke, “Effects of Cold Work on the Oxidation Behavior and Carburization Resistance of Alloy 800”, Werkstoffe und Korrosion, Vol. 38, pp. 556-562, 1987.
    79. V. A. Schnaas, H. J. Grabke, “Changes in Material Properties of Austenitic CrNiFe-alloys by Carburization”, Werkstoffe und Korrosion, Vol. 29, pp. 635-644, 1978.
    80. M. A. Harper, M. Ducasse, D. J. Young, “Cyclic Oxidation Plus Carburization of Heat-Resistant Alloys”, Corrosion, Vol. 51, No. 3, pp. 191-200, 1995.
    81. JCPDS 25-0284, Holcombe, USAEC Oak Ridge Y-12 Plant, Report Y-18
    -87, 1973.

    下載圖示
    2006-01-31公開
    QR CODE