簡易檢索 / 詳目顯示

研究生: 蕭念恩
Hsiao, Nien-En
論文名稱: 腸病毒A71型感染人類核仁蛋白基因轉殖鼠的病理表現
Pathological characterization of enterovirus A71 infection in human nucleolin transgenic mice
指導教授: 張權發
Chang, Chuan-Fa
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 53
中文關鍵詞: 腸病毒A71型人類核仁蛋白基因轉殖鼠細胞激素腦幹腦炎肺水腫
外文關鍵詞: Human enterovirus species A, nucleolin, human nucleolin transgenic (Tg) mice, cytokines, pulmonary edema
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類腸病毒A71型 (Human enterovirus A71, HEV-A71)隸屬於小RNA病毒科(Picornaviridae)、腸病毒屬 (Enterovirus)的病毒。主要感染五歲以下嬰幼兒,可以引發典型症狀手口足病、疱疹性咽峽炎以及感染中樞神經系統導致肢體麻痺症候群病毒性、腦炎,更嚴重會導致神經性肺水腫致死。腸病毒A71型感染需要辨識宿主表面的接受器,進一步進入宿主細胞。在實驗室先前的研究當中,使用糖蛋白質體的方法,找到有別於PSGL-1和SCARB2,會與EV-A71交互作用的糖蛋白「核仁蛋白」(nucleolin, NCL)。並且在細胞以及人類核仁蛋白基因轉殖鼠證實核仁蛋白能夠幫助腸病毒A71型進行感染。為了進一步了解人類核仁蛋白基因轉殖鼠受到病毒感染之後,產生後肢癱瘓的原因、感染後病程發展、組織受到病毒感染的情況是否跟核仁蛋白表現量相關、小鼠感染後體內的免疫表現,以及會出現的病徵,進行以下的實驗,並且藉此了解人類核仁蛋白基因轉殖鼠是否為一個適合用來研究腸病毒A71型的動物模式。在核仁蛋白表現量較高的基因轉殖鼠,其脊髓跟肌肉被病毒感染的程度較高;肌肉組織中的感染情形也較其他組織嚴重。基因轉殖鼠在感染後,體內IL-4, IL-6, IL-13, IL-1β, MCP1, IP-10, TNF-α表現量都比對照組來的高,代表免疫反應較為劇烈。且這些細胞激素在臨床上腸病毒A71病人感染後產生腦幹腦炎以及肺水腫有高度相關性。人類核仁蛋白基因轉殖鼠在感染腸病毒A71型/MP4病毒株之後,肺臟占體重的比例,與對照組相比,雖然沒有顯著差異,但是肺臟外觀較對照組紅腫,且部分基因轉殖鼠在顯微鏡下觀察到肺泡出血的現象,因此推測基因轉殖小鼠在感染後,可能有肺出血肺水腫的現象。 綜合以上,人類核仁蛋白基因轉殖鼠也許能夠在腸病毒A71型研究上面扮演一個很好的實驗模式,可以使用於未來基礎研究與腸病毒感染治療藥物及測試研究。

    After the 1998 outbreak, enterovirus A71 (EV-A71) has become an endemic in Taiwan. EV-A71 infection is well known to cause hand-foot-mouth disease which may develop severe symptoms such as encephalitis, herpangina, paralysis, and lead to pulmonary edema even to death in children under 5 years old. The receptors for EV-A71, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), annexin II, lactoferrin, and heparin sulfate, have been identified during the last decade. Although human SCARB2 and human PSGL-1 transgenic mice have also been developed, however, only few-day-old mice can be infected productively. Thus, a useful animal model for investigating EV-A71 pathogenesis in vivo is urgent. In the previous studies, we found a sialylated glycan gene human nucleolin (hNCL) that could promote virus binding and infection in vitro. After that, we wanted to demonstrate the EV-A71 pathogenesis in vivo. We found that MP4 (EV-A71 mouse adapted virus)-infected-hNCL transgenic mice displayed higher clinical scores and progressive limb paralysis prior to death. Based on the previous results, the immunologic characterization of cytokine responses to EV-A71 infection and pathogenesis in hNCL transgenic mice were investigated in this study. As the results of the tissue sections, we found that hNCL transgenic mice were more severely destroyed in thigh muscle and had highly EV-A71-VP1 signals in muscle, spinal cord, and brain stem comparing with C57BL/6 wild-type mice (WT mice); in the cytokine response, hNCL transgenic mice had higher IL-4, IL-6, IL-10, IL-13, IL-1β, MCP1, IP-10, TNF-α performances than WT mice. These cytokines were clinically related to encephalitis and pulmonary edema. The lungs of hNCL transgenic mice which were infected by the EV-A71 exhibited lightly swollen, redness and infiltration of erythrocytes in the alveoli under the microscopy. Next step, we will measure the neurotransmitters including epinephrine and norepinephrine and confirm whether this phenomenon is pulmonary edema. This novel animal model with these advantages may build a platform for basic and preclinical research in therapeutics in the future.

    English Abstract II Chinese Abstract IV Acknowledgement V Figure Index IX Table Index X Appendix Index XI Abbreviations XII Chapter 1. Introduction 1 1. Human enterovirus A71 1 1.1 Clinical symptoms and epidemiology 1 1.2 Classification and structure 1 2. The entry of EV-A71 2 2.1 The life cycle of EV-A71 2 2.2 The receptors and attachment of EV-A71 2 3. Nucleolin 3 3.1 Function and position 3 3.2 Roles of NCL in virus infection 4 4. Animal models 4 Chapter 2. Objective 6 I. Evaluating the mechanism of paralysis by observing protein quantification and tissue sections 6 II. A study of the immunologic response of hNCL-Tg mice through cytokine detection 6 III. Deterining whether an hNCL-Tg mouse is a suitable animal model for assessing pulmonary edema 7 Chapter 3. Materials and methods 8 1. Cell and virus 8 2. Virus amplification 8 3. Plaque assay 8 4. Animal model 9 4.1 Establishment 9 4.2 Genotyping 9 4.3 Clinical scores and survival rate 10 4.4 Viral load in tissues 10 5. Histopathological and immunohistochemical (IHC) staining 10 6. Western blot 11 7. Cytokine measurement 12 8. Statistical analysis 13 Chapter 4. Results 14 Previous studies 14 The hNCL-Tg mouse was the suitable mouse enterovirus infection model 15 Evaluation of the paralysis mechanism of observing protein quantification and tissue section 16 Immunologic response of hNCL-Tg mice by cytokine detection in the muscle 17 Immunologic response of hNCL-Tg mice by cytokine detection in the spinal cord 18 Immunologic response of hNCL-Tg mice by cytokine detection in the serum 18 Determination of whether hNCL-Tg mice constitute is a suitable animal model of enterovirus infection especially for assessing pulmonary edema 19 Chapter 5. Discussion 20 Viral replication and tissue tropism in the hNCL-Tg mice. Were the hind limbs of the mice paralyzed due to myositis or CNS involvement? 21 Cytokines response in the mice 21 Neurogenic pulmonary edema (NPE) 23 The comparison of EV-A71-infected mouse models 24 Chapter 6. Conclusion 25 References 26

    1. Solomon, I., et al., Seasonal incidence of enteroviruses in apparently healthy young children. Stud Cercet Inframicrobiol, 1968. 19(1): p. 29-32.
    2. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 1999. 341(13): p. 929-35.
    3. Fowlkes, A.L., et al., Enterovirus-associated encephalitis in the California encephalitis project, 1998-2005. J Infect Dis, 2008. 198(11): p. 1685-91.
    4. Ortner, B., et al., Epidemiology of enterovirus types causing neurological disease in Austria 1999-2007: detection of clusters of echovirus 30 and enterovirus 71 and analysis of prevalent genotypes. J Med Virol, 2009. 81(2): p. 317-24.
    5. Wang, S.M., et al., Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J Infect Dis, 2008. 198(7): p. 1002-6.
    6. Mcminn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107.
    7. Nikonov, O.S., et al., Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc), 2017. 82(13): p. 1615-1631.
    8. Han, J.F., et al., Producing infectious enterovirus type 71 in a rapid strategy. Virol J, 2010. 7: p. 116.
    9. Lin, J.Y., et al., Viral and host proteins involved in picornavirus life cycle. J Biomed Sci, 2009. 16: p. 103.
    10. Solomon, T., et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis, 2010. 10(11): p. 778-90.
    11. Baggen, J., et al., The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol, 2018.
    12. Lu, J., et al., Viral kinetics of enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol, 2011. 17(36): p. 4135-42.
    13. Ruiz-Saenz, J., et al., Cellular receptors for foot and mouth disease virus. Intervirology, 2009. 52(4): p. 201-12.
    14. Yamayoshi, S., et al., Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol, 2012. 86(10): p. 5686-96.
    15. Yamayoshi, S., et al., Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol, 2011. 85(10): p. 4937-46.
    16. Yamayoshi, S., et al., Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med, 2009. 15(7): p. 798-801.
    17. Laszik, Z., et al., P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood, 1996. 88(8): p. 3010-21.
    18. Somers, W.S., et al., Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell, 2000. 103(3): p. 467-79.
    19. Tan, C.W., et al., Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol, 2013. 87(1): p. 611-20.
    20. Yang, S.L., et al., Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol, 2011. 85(22): p. 11809-20.
    21. Su, P.Y., et al., Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol, 2015. 89(8): p. 4527-38.
    22. Srivastava, M., et al., Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. Faseb j, 1999. 13(14): p. 1911-22.
    23. Barel, M., et al., Nucleolin, a shuttle protein promoting infection of human monocytes by Francisella tularensis. PLoS One, 2010. 5(12): p. e14193.
    24. Hovanessian, A.G., et al., The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res, 2000. 261(2): p. 312-28.
    25. Alete, D.E., et al., Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-sigma. Febs j, 2006. 273(20): p. 4668-81.
    26. Tayyari, F., et al., Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med, 2011. 17(9): p. 1132-5.
    27. De Verdugo, U.R., et al., Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol, 1995. 69(11): p. 6751-7.
    28. Qiu, J., et al., A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology, 1999. 257(2): p. 373-82.
    29. Krust, B., et al., The anti-HIV pentameric pseudopeptide HB-19 is preferentially taken up in vivo by lymphoid organs where it forms a complex with nucleolin. Proc Natl Acad Sci U S A, 2001. 98(24): p. 14090-5.
    30. Birmpas, C., et al., The pseudopeptide HB-19 binds to cell surface nucleolin and inhibits angiogenesis. Vasc Cell, 2012. 4(1): p. 21.
    31. Fujii, K., et al., Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci U S A, 2013. 110(36): p. 14753-8.
    32. Liu, J., et al., Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol, 2012. 157(3): p. 539-43.
    33. Khong, W.X., et al., A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol, 2012. 86(4): p. 2121-31.
    34. Liao, C.C., et al., Immunodeficient mouse models with different disease profiles by in vivo infection with the same clinical isolate of enterovirus 71. J Virol, 2014. 88(21): p. 12485-99.
    35. Liou, A.T., et al., A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep, 2016. 6: p. 31151.
    36. Nagata, N., et al., Differential localization of neurons susceptible to enterovirus 71 and poliovirus type 1 in the central nervous system of cynomolgus monkeys after intravenous inoculation. J Gen Virol, 2004. 85(Pt 10): p. 2981-9.
    37. Wang, Y.F., et al., Animal models of enterovirus 71 infection: applications and limitations. J Biomed Sci, 2014. 21: p. 31.
    38. Su, P.Y., et al., Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol, 2012. 12: p. 162.
    39. Wang, Y.F., et al., A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol, 2004. 78(15): p. 7916-24.
    40. Zhang, S.Y., et al., Immunologic Characterization of Cytokine Responses to Enterovirus 71 and Coxsackievirus A16 Infection in Children. Medicine (Baltimore), 2015. 94(27): p. e1137.
    41. Chen, C.S., et al., Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J Virol, 2007. 81(17): p. 8996-9003.
    42. Too, I.H., et al., Enterovirus 71 infection of motor neuron-like NSC-34 cells undergoes a non-lytic exit pathway. Sci Rep, 2016. 6: p. 36983.
    43. Zhang, J.M., et al., Cytokines, inflammation, and pain. Int Anesthesiol Clin, 2007. 45(2): p. 27-37.
    44. Rojas, J.M., et al., IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res, 2017. 2017: p. 6104054.
    45. Huang, S.W., et al., Exogenous interleukin-6, interleukin-13, and interferon-gamma provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice. Respir Res, 2011. 12: p. 147.
    46. Victorio, C.B., et al., A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema. Sci Rep, 2016. 6: p. 28876.
    47. Patel, K.P., et al., Receptors identified for hand, foot and mouth virus. Nat Med, 2009. 15(7): p. 728-9.

    無法下載圖示 校內:2023-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE