簡易檢索 / 詳目顯示

研究生: 許真惠
Xu, Zhen-Hui
論文名稱: 超臨界二氧化碳環境下對添加碳化矽之套管水泥基本性質之研究
A Study of the Basic Properties of API-G Well Cement With Silicon Carbide Admixtures Exposed to Supercritical CO2 Environment
指導教授: 王建力
Wang, Chein-Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: API-G水泥超臨界二氧化碳環境碳化反應碳化矽
外文關鍵詞: API Class G, silicon carbide, supercritical CO2 environment, carbonation
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從工業革命以來,人為活動所產生的溫室氣體濃度明顯增加,溫室效應對於整個生態環境及全球氣候,已造成深遠的影響,因此二氧化碳捕捉與封存技術為重要的排放減量選項。而二氧化碳的地質封存技術實行中,常遭遇超臨界的溫度與壓力環境,使封存材料如套管水泥產生碳化反應,導致水泥材料的力學強度降低、膠結成分遭到破壞,進而造成二氧化碳洩漏的風險。
    經由前人研究發現,添加碳化矽之套管水泥能有效抵抗超臨界二氧化碳環境之碳化問題,因此本研究針對套管水泥(API-G)添加不同配比(0.5%、1%、3%、5%)之碳化矽,將其置入超臨界二氧化碳環境反應釜中,參數設定45°C、25 MPa之超臨界二氧化碳環境,經由不同天數(0、14、28、56、84天)反應後,進行一系列試驗,探討隨著時間,不同配比碳化矽對水泥基本性質之變化,並且找出最佳之添加碳化矽配比。
    研究結果發現API-G+3wt.% SiC之套管水泥,會使鈣矽比明顯降低,而微觀結構產生許多纖維狀及柱狀碳酸鈣與白色微小之碳化矽晶體,此晶體能堆積填補孔隙使其結構更加緻密,增強水泥強度並降低透性,有較佳之防止水泥碳化而弱化之能力。

    Since the industrial revolution, the concentration of anthropogenic greenhouse gases has increased significantly. The greenhouse effect has had a profound impact on the entire ecological environment and the global climate. Therefore, carbon dioxide capture and storage (CCS) is an important to reduce carbon emission. In the geological storage of carbon dioxide technology, a supercritical temperature and pressure environment will be encountered, which will cause carbonization of the well cement in the oil well. This reduces the mechanical properties of the cement material, thereby causing CO2 leakage.
    Previous studies have shown that the well cement with silicon carbide can be beneficial to the carbonization of the supercritical CO2 environment. Therefore, this study proposes to additions of different proportions of silicon carbide (0.5%, 1%, 3%, 5%) to well cement (API-G cement) in a supercritical CO2 reactor at temperature of 45°C and pressure of 25 MPa. This study has carried out a series of tests, after different reaction periods (before reaction, 14, 28, 56, 84 days). The changes of the basic properties of cement with different proportions of silicon carbide were observed after different reaction periods. Finally, this study proceeds to investigate the optimum proportions of silicon carbide in cement.
    The results show that the addition of 3wt. % SiC in API-G cement will make a significant reduction in the ratio of calcite to silicon. Many fibrous and columnar calcium carbonate crystals and tiny white crystals produced in microstructures can fill the pores to make the structure densest, and enhance the strength of cement and reduce the permeability, preventing the cement carbonization in a better way.

    摘要 I Extended Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的與內容 4 第二章 文獻回顧 6 2-1 二氧化碳捕捉與封存 6 2-1-1 二氧化碳捕捉與封存 7 2-1-2 二氧化碳封存洩漏之研究 9 2-2 二氧化碳對水泥之影響 15 2-2-1 二氧化碳對水泥碳化之機制 15 2-2-2 二氧化碳對水泥性質之相關試驗及影響 20 2-2-3 二氧化碳對水泥添加摻料性質之相關試驗及影響 32 2-3 水泥添加碳化矽之相關試驗及應用 44 2-4 本研究室歷屆模擬水泥於二氧化碳環境之研究 52 第三章 試驗材料與試驗設備 60 3-1 試驗材料與製備 60 3-1-1試驗材料及配比 60 3-1-2 試體製備 64 3-2 超臨界二氧化碳環境反應設備 67 3-3 試驗設備與量測方法 70 3-3-1 比重(Specific Gravity)量測 70 3-3-2黏度(Viscosity)量測 72 3-3-3 透水試驗 74 3-3-4 超聲波檢測試驗 76 3-3-5 單軸壓縮強度試驗 78 3-3-6 碳化深度量測試驗 81 3-3-7 微觀結構及成分組成分析(SEM、EDS) 82 3-3-8 X光粉末繞射分析(X-ray Diffraction, XRD) 84 第四章 試驗結果與討論 85 4-1 比重與黏度量測 85 4-2 透水試驗 87 4-3 超聲波檢測試驗 90 4-4 單軸壓縮強度試驗 93 4-5 碳化深度量測試驗 96 4-6 化學分析(XRD、SEM、EDS) 97 4-6-1 XRD及SEM分析 98 4-6-2 EDS分析 106 第五章 結論與建議 108 5-1 結論 108 5-2 建議 111 參考文獻 113

    [1]工業技術研究院,二氧化碳捕獲與封存技術網,http://ccs.tw/node/1,2014。
    [2]江健豪,超臨界二氧化碳環境下對套管水泥力學與物化性質之影響,國立成功大學資源工程研究所碩士論文,2012。
    [3]行政院環保署,2017年中華民國國家溫室氣體排放清冊報告,http://unfccc.saveoursky.org.tw/2017nir/tw_nir.php,2017。
    [4]李冠穎,二氧化碳環境下對油井水泥物理性質及化學性質之影響,國立成功大學資源工程研究所碩士論文,2011。
    [5]林唐筠,超臨界二氧化碳環境下添加不同鈣矽比摻料對套管水泥力學、物理與化學性質之研究,國立成功大學資源工程研究所碩士論文,2017。
    [6]郭俊志,二氧化碳封存環境下對封固材料基本性質影響之研究,國立成功大學資源工程研究所博士論文,2015。
    [7]陳宏銓,超臨界二氧化碳環境下對添加矽酸化合物套管水泥性質之研究,國立成功大學資源工程研究所碩士論文,2014。
    [8]陳金土、邱金水等人,鑽採工程材料手冊:第八篇─套管與下水泥工程,中油股份有限公司台灣油礦探勘總處,1987。
    [9]陳思螢,超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究,國立成功大學資源工程研究所碩士論文,2012。
    [10]楊昀叡,二氧化碳環境下纖維摻料對套管水泥性質之研究,國立成功大學資源工程研究所碩士論文,2011。
    [11]劉浙仁、譚志豪、冀樹勇,臺灣發展二氧化碳地質封存之場址評選策略研議,中興工程,131,19-28,2016。
    [12]歐陽湘,二氧化碳地質封存,科學發展 專題報導,510,6-11,2015。
    [13]冀樹勇、譚志豪、劉浙仁,全球暖化的減碳策略—碳捕獲與封存(CCS),大地技師,9,32-39,2014。
    [14]謝欣婷,超臨界二氧化碳環境下對添加碳化矽套管水泥力學與物化性質之研究,國立成功大學資源工程研究所碩士論文,2016。
    [15]譚志豪、劉浙仁、冀樹勇,臺灣發展二氧化碳地質封存之優勢、機會與策略,中興工程,124,23-32,2014。
    [16]Agata Lorek, Małgorzata Labus, Petr Bujok, Wellbore cement degradation in contact zone with formation rock, Environmental Earth Sciences, 75(499), 2016.
    [17]Ali Bahari1, Javad Berenjian, Aref Sadeghi-Nik, Modification of Portland Cement with Nano SiC, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86(3), 323-331, 2016.
    [18]Andre Garnier, Jean-Benoit Laudet , Nadine Neuville, Yvi Le Guen, Dominique Michae, Fourmaintraux, Noureddine Rafai, Nicolas Burlion, J.F. Shao, CO2-Induced Changes in Oilwell Cements Under Downhole Conditions: First Experimental Results, Paper presented at the SPE Annual Technical Conference and Exhibition, Florence. Italy, 2010.
    [19]Andreas Brandl, Jennifer Cutler, Amanda Seholm, Michelle Sansil, Gerald Braun, Cementing Solutions for Corrosive Well Environments, Society of Petroleum Engineers, 26(2), 208-219, 2011.
    [20]Ashok Kumar Santra, B.R. Reddy, Feng Liang, Rocky Fitzgerald, Reaction of CO2 with Portland Cement at Downhole Conditions and the Role of Pozzolanic Supplements, Paper presented at the International Symposium on Oilfield Chemistry (SPE), Woodlands. Texas, 2009.
    [21]Barbara G. Kutchko, Brian R. Strazisar, David A. Dzombak, Gregory V. Lowry, Niels Thaulow, Degradation of Well Cement by CO2 under Geologic Sequestration Conditions, Environmental Science and Technology, 41, 4787-4792, 2007.
    [22]Barbara G. Kutchko, Brian R. Strazisar, Steven B. Hawthorne, Christina L. Lopano, David J. Miller, J. Alexandra Hakala, George D. Guthrie, H2S–CO2 reaction with hydrated Class H well cement: Acid-gas injection and CO2 Co-sequestration, International Journal of Greenhouse Gas Control, 5(4), 880-888, 2011.
    [23]Cristina Aiex, Gilson Campos, Abhimanyu Deshpande, Abhinandan Chiney, Sandip Patil, Kris Ravi, An experimental study on effects of static CO2 on cement under high-pressure/high-temperature conditions, Paper presented at the Offshore Technology Conference, Houston, 2015.
    [24]Fei-Peng Du, Sui-Sui Xie, Fang Zhang, Chak-Yin Tang, Ling Chen, Wing-Cheung Law, Chi-Pong Tsui, Microstructure and compressive properties of silicon carbide reinforced geopolymer, Composites Part B, 105, 93-100, 2016.
    [25]Gaëtan Rimmelé, Véronique Barlet-Gouédard, Olivier Porcherie, Bruno Goffé, Fabrice Brunet, Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids, Cement and Concrete Research, 38, 1038-1048, 2008.
    [26]IEA Greenhouse Gas R&D Programme (IEA GHG), Assessment of sub sea ecosystem impacts, IEA Greenhouse Gas R&D Programme, 2009.
    [27]Intergovernmental Panel on Climate Change (IPCC), IPCC Special Report on Carbon Dioxide Capture and Storage (ISBN-13 978-0-521-86643-9), Canada, Cambridge University Press, 2005.
    [28]International Energy Agency (IEA), Key World Energy Statistics 2017, International Energy Agency, 2017.
    [29]J. William Carey, Marcus Wigand, Steve J. Chipera, Giday Wolde Gabriel, Rajesh Pawar, Peter C. Lichtner, Scott C. Wehner, Michael A. Raines, George D. Guthrie Jr., Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA, International Journal of Greenhouse Gas Control, 1(1), 75-85, 2007.
    [30]Jung J. Kim, Muhammad K. Rahman, Abdulaziz A. Al-Majed, Mesfer M. Al-Zahrani, Mahmoud M. Reda Taha, Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure, Cement & Concrete Composites, 43, 78-85, 2013.
    [31]Lin Yuanhua, Zhu Dajiang, Zeng Dezhi, Yang Yuanguang, Shi Taihe, Deng Kuanhai, Ren Chengqiang, Zhang Deping, Wang Feng, Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions, Corrosion Science, 74, 13-21, 2013.
    [32]M.F. Zawrah, A.A. El-Kheshen, A.A. El-Maghraby, Effect of SiC–graphite–Al-metal addition on low- and ultra-low cement bauxite castables, Ceramics International, 38, 3857-3862, 2012.
    [33]M. Lesti, C.Tiemeyer, J. Plank, CO2 stability of Portland cement based well cementing systems for use on carbon capture & storage (CCS) wells, Cement and Concrete Research, 45, 45-54, 2013.
    [34]Md. Mofazzal Hossain, Mohammed Amro, Drilling and Completion Challenges and Remedies of CO2 Injected Wells with Emphasis to Mitigate Well Integrity Issues, Paper presented at the Asia Pacific Oil and Gas Conference and Exhibition (SPE), Brisbane, Queensland. Australia, 2010.
    [35]Min Zhang, Stephen Talman, Experimental Study of Well Cement Carbonation under Geological Storage Conditions, Energy Procedia, 63, 5813-5821, 2014.
    [36]Nadine NEUVILLE, Georges AOUAD, Eric LECOLIER, Denis, DAMIDOT, Innovative Leaching Tests of an Oilwell Cement Paste for CO2 Storage: Effect of the Pressure at 80°C, Energy Procedia, 23, 472-479, 2012.
    [37]Nevio Moroni, Ashok Kumar Santra, Krishna Ravi, William John Hunter, Holistic design of cement systems to survive CO2 environment, SPE-124733-MS, 2009.
    [38]Omotayo Omosebi, Himanshu Maheshwari, Ramadan Ahmed, Subhash Shah, Samuel Osisanya, Experimental study of the effects of CO2 concentration and pressure at elevated temperature on the mechanical integrity of oil and gas well cement, Journal of Natural Gas Science and Engineering, 44, 299-313, 2017.
    [39]Sarah E. Gasda, Stefan Bachu, Michael A. Celia, Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin, Environmental Geology, 46(6-7), 707-20, 2004.
    [40]Tao Gu, Xiaoyang Guo, Zaoyuan Li, Xiaowei Cheng, Xiaoxia Fan, Asghar Korayem, Wen Hui Duan, Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions, Construction and Building Materials, 130, 92-102, 2017.
    [41]Teresa Kantel, Agnieszka Ślosarczyk, Influence of silicon carbide and electrocorundum on the thermal resistance of cement binders with granulated blast-furnace slag, Procedia Engineering, 172, 497-504, 2017.
    [42]Tereza Pavlů, Magdaléna Šefflová, Carbonation Resistance of Fine Aggregate Concrete with Partial, Replacement of Cement, Key Engineering Materials, 722, 201-206, 2016.
    [43]V. Barlet-Gouédard, G. Rimmelé, Schlumberger, B. Goffé, CNRS/ENS, O. Porcherie, Schlumberger, Mitigation Strategies for the Risk of CO2 Migration Through Wellbores, IADC/SPE Drilling Conference, 2006.
    [44]V. Ershadi, T. Ebadi, A.R Rabani, L. Ershadi, H. Soltanian, The Effect of Nanosilica on Cement Matrix Permeability in Oil Well to Decrease the Pollution of Receptive Environment, International Journal of Enviromental Science and Development, 2, 128-132, 2011.
    [45]Walter Crow, J. William Carey, Sarah Gasda, D. Brian Williams, Michael Celia, Wellbore integrity analysis of a natural CO2 producer, International Journal of Greenhouse Gas Control, 4(2), 186-197, 2010.
    [46]Wang Ping, Qu Zhan, Zhang Jian Bing, Research on Carbon Dioxide corrosion of Cement stones of Oil well Casings under high temperature and high pressure, Advanced Materials Research, 413, 24-28, 2011.
    [47]Zhang, J., Y. Wang, M. Xu, Q. Zhao, Effect of carbon dioxide corrosion on compressive strength of oil-well cement, Journal of the Chinese Ceramic Society, 37(4), 642-647, 2009.
    [48]Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen, Silicon carbide waste as a source of mixture materials for cement mortar, Frontiers of Environmental Science & Engineering, 11(5):2, 1-8, 2017.

    無法下載圖示 校內:2021-07-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE