簡易檢索 / 詳目顯示

研究生: 簡慈恩
Chien, Tzu-En
論文名稱: 三聚氰酸及三聚鹵氰在二氧化鈦粉末表面上的吸附與反應
Adsorption and Reactions of Cyanuric acid and Cyanuric Halides on Powdered TiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 二氧化鈦三聚氰酸三聚氯氰三聚氟氰互變異構物
外文關鍵詞: TiO2, Cyanuric Acid, Cyanuric Chloride, Cyanuric Fluoride, Tautomer
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用傅氏轉換紅外光譜儀(FTIR)研究三聚氰酸(Cyanuric acid)及其鹵素取代衍生物三聚氯氰(Cyanuric chloride)及三聚氟氰(Cyanuric fluoride)在二氧化鈦粉末表面上的吸附與反應,並輔以理論計算模擬其吸附結構及振動光譜。三聚氰酸在35 oC時會以多種互變異構物形式吸附在二氧化鈦表面上,隨著溫度的上升會轉變成單一的異構物形式,300 oC時三嗪環會破裂生成-NCO及-N3。三聚氯氰及三聚氟氰隨著溫度上升會生成三聚氰酸,最後分解成-NCO及-N3。三聚氟氰在OH基修飾的二氧化鈦表面上加熱至375 oC發現N=C=N結構生成。三聚氰酸在二氧化鈦上的有氧照光反應,沒有分解及互變異構化反應發生,藉由18O2的同位素實驗也指出沒有氧原子交換發生。

    Fourier transform infrared spectroscopy was employed to study the thermal and photochemical reactions of cyanuric acid ((OH)3(C3N3)) on TiO2. Also tested was the adsorption of cyanuric chloride (C3N3Cl3) and cyanuric fluoride (C3N3F3) to confirm the reaction pathways. We found that there were manifold tautomers for cyanuric acid adsorbed on TiO2 at 35 oC. As the temperature was increased, cyanuric acid underwent tautomerization, resulting in one most stable tautomeric form. Not until 300 oC did the ring-opening of cyanuric acid begin and lead to the formation of -NCO (isocyanate) and -N3 (azide). On TiO2, cyanuric chloride and cyanuric fluoride transformed into cyanuric acid and finally decomposed to form -NCO and -N3. In OH-modified TiO2, we found surface intermediates containing N=C=N skeleton when cyanuric fluoride was heated to 375 oC. TiO2-mediated photochemical reaction of cyanuric acid in the presence of oxygen didn’t occur, even tautomerization. The observation of no isotope effect scrambling by using 18O2 indicated that no oxygen exchange happened between O2 and cyanuric acid on TiO2 under photoirradiation.

    第一章 緒論 1 1-1 表面科學 1 1-1-1 表面的定義 2 1-1-2 表面催化 2 1-1-3 表面吸附 4 1-2 TiO2晶體結構 5 1-2-1 TiO2表面 6 1-3 TiO2光催化 8 1-3-1 TiO2光催化原理 8 1-3-2 TiO2光催化的應用及發展 10 1-4 研究動機 13 第二章 實驗系統及方法 15 2-1 實驗系統概述 15 2-1-1 儀器 16 2-1-2 藥品 17 2-2 傅氏轉換紅外線光譜系統 18 2-2-1 IR光源 18 2-2-2 偵檢器 18 2-3 UV光源 19 2-4 真空系統 20 2-4-1 紅外光譜反應槽(IR cell)設計 20 2-5 二氧化鈦/鎢網(TiO2/W)的製備 23 2-5-1 TiO2/W在紅外光譜反應槽(IR cell)的擺放位向 23 2-5-2 TiO2/W的前處理 24 2-6 藥品的製備及處理 26 2-7 表面理論計算模型 27 第三章 結果與討論 28 3-1 三聚氰酸(Cyanuric acid, C3H3N3O3)在TiO2表面上的吸附與熱反應 28 3-1-1 三聚氰酸的吸附 28 3-1-2 真空下的熱反應研究 31 3-1-3 氧氣存在的熱反應研究 34 3-2 三聚氯氰(Cyanuric chloride, C3N3Cl3)在TiO2表面上的吸附與熱反應 36 3-2-1 三聚氯氰的吸附 36 3-2-2真空下的熱反應研究 37 3-3 三聚氟氰(Cyanuric fluoride, C3N3F3)在TiO2表面上的吸附與熱反應 39 3-3-1 三聚氟氰的吸附 39 3-3-2 真空下的熱反應研究 39 3-3-3 三聚氟氰在OH(a)-TiO2的真空加熱研究 40 3-4 三聚氰酸在TiO2表面上的熱反應機構探討 45 3-5 三聚氰酸在TiO2表面的光反應 47 3-5-1三聚氰酸光化學的研究背景 47 3-5-2三聚氰酸在密閉氧氣的照光研究 47 第四章 結論 70 參考文獻 71 附錄 78

    [1] W. Stillwell, An Introduction to Biological Membranes: From Bilayers to Rafts, Elsevier/Academic Press2013.
    [2] P. M. D. Collins, The Pivotal Role of Platinum in the Discovery of Catalysis, Platinum Metals Review, 30 (1986) 141-146.
    [3] A. J. B. Robertson, The Early History of Catalysis, Platinum Metals Review, 19 (1975) 64-69.
    [4] E. Cook, Peregrine Phillips, the Inventor of the Contact Process for Sulphuric acid, Nature 117 (1926) 419-421.
    [5] M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering, Dover Publications2013.
    [6] L. Lloyd, Handbook of Industrial Catalysts, Springer 2011.
    [7] G. A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons2010.
    [8] J. C. Vickerman, I. Gilmore, Surface Analysis: The Principal Techniques, Wiley2011.
    [9] L. B. Hunt, Sir Humphry Davy on Platinum, Platinum Metals Review, 23 (1979) 21-31.
    [10] P. Atkins, J. de Paula, Atkins' Physical Chemistry, OUP Oxford 2010.
    [11] M. Landmann, E. Rauls, W.G. Schmidt, The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2, Journal of physics. Condensed matter : An Institute of Physics journal, 24 (2012) 195503.
    [12] H. Zhang, J. F. Banfield, Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:  Insights from TiO2, The Journal of Physical Chemistry B, 104 (2000) 3481-3487.
    [13] J. Augustynski, The Role of the Surface Intermediates in the Photoelectrochemical Behaviour of Anatase and Rutile TiO2, Electrochimica Acta, 38 (1993) 43-46.
    [14] E. Stoyanov, F. Langenhorst, G. Steinle-Neumann, The Effect of Valence State and Site Geometry on Ti L3,2 and O K Electron Energy-loss Spectra of TixOy phases, American Mineralogist, 92 (2007) 577-586.
    [15] J. K. Burdett, T. Hughbanks, G.J. Miller, J. W. Richardson, J. V. Smith, Structural-electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K, Journal of the American Chemical Society, 109 (1987) 3639-3646.
    [16] B. Ohtani, O. O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction From Isolated Pure Particles and Photocatalytic Activity Test, Journal of Photochemistry and Photobiology A: Chemistry, 216 (2010) 179-182.
    [17] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, Journal of Catalysis, 203 (2001) 82-86.
    [18] J. Pan, G. Liu, G. Q. Lu, H. M. Cheng, On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals, Angewandte Chemie, 50 (2011) 2133-2137.
    [19] Z. Zhang, C.-C. Wang, R. Zakaria, J. Y. Ying, Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts, The Journal of Physical Chemistry B, 102 (1998) 10871-10878.
    [20] D. Sarkar, C. K. Ghosh, K. K. Chattopadhyay, Morphology Control of Rutile TiO2 Hierarchical Architectures and Their Excellent Field Emission Properties, CrystEngComm, 14 (2012) 2683-2690.
    [21] J.-Y. Liao, J.-W. He, H. Xu, D.-B. Kuang, C.-Y. Su, Effect of TiO2 Morphology on Photovoltaic Performance of Dye-sensitized Solar Cells: Nanoparticles, Nanofibers, Hierarchical Spheres and Ellipsoid Spheres, Journal of Materials Chemistry, 22 (2012) 7910-7918.
    [22] W. Zhou, G. Du, P. Hu, G. Li, D. Wang, H. Liu, J. Wang, R. I. Boughton, D. Liu, H. Jiang, Nanoheterostructures on TiO2 Nanobelts Achieved by Acid Hydrothermal Method with Enhanced Photocatalytic and Gas Sensitive Performance, Journal of Materials Chemistry, 21 (2011) 7937-7945.
    [23] M. Lazzeri, A. Vittadini, A. Selloni, Structure and Energetics of StoichiometricTiO2 Anatase Surfaces, Physical Review B, 63 (2001) 155409.
    [24] L. Ye, J. Mao, J. Liu, Z. Jiang, T. Peng, L. Zan, Synthesis of Anatase TiO2 Nanocrystals with {101}, {001} or {010} Single Facets of 90% Level Exposure and Liquid-phase Photocatalytic Reduction and Oxidation Activity Orders, Journal of Materials Chemistry A, 1 (2013) 10532-10537.
    [25] J. Pan, X. Wu, L. Wang, G. Liu, G.Q. Lu, H.-M. Cheng, Synthesis of Anatase TiO2 Rods with Dominant Reactive {010} Facets for the Photoreduction of CO2 to CH4 and Use in Dye-sensitized Solar Cells, Chemical Communications, 47 (2011) 8361-8363.
    [26] I. Jang, K. Song, J.-H. Park, S.-G. Oh, Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells, Bulletin of the Korean Chemical Society, 34 (2013) 2883-2888.
    [27] T. K. Le, D. Flahaut, H. Martinez, T. Pigot, H. K. H. Nguyen, T. K. X. Huynh, Surface Fluorination of Single-phase TiO2 by Thermal Shock Method for Enhanced UV and Visible Light Induced Photocatalytic Activity, Applied Catalysis B: Environmental, 144 (2014) 1-11.
    [28] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
    [29] A. J. Bard, Photoelectrochemistry, Science, 207 (1980) 139-144.
    [30] B. O'Regan, M. Gratzel, A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films, Nature, 353 (1991) 737-740.
    [31] K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, P. M. Sirimanne, A dye-sensitized Nano-porous Solid-state Photovoltaic Cell, Semiconductor Science and Technology, 10 (1995) 1689.
    [32] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 Photocatalysis and Related Surface Phenomena, Surface Science Reports, 63 (2008) 515-582.
    [33] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758.
    [34] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A Comprehensive Review of ZnO Materials and Devices, Journal of Applied Physics, 98 (2005) 041301.
    [35] J. Nanda, B. A. Kuruvilla, D. D. Sarma, Photoelectron Spectroscopic Study of CdS Nanocrystallites, Physical Review B, 59 (1999) 7473-7479.
    [36] C. Di Valentin, G. Pacchioni, Trends in Non-metal Doping of Anatase TiO2: B, C, N and F, Catalysis Today, 206 (2013) 12-18.
    [37] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst, Water Research, 38 (2004) 3001-3008.
    [38] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer, Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR, The Journal of Physical Chemistry B, 107 (2003) 4545-4549.
    [39] S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, An Enhanced CdS/TiO2 Photocatalyst with High Stability and Activity: Effect of Mesoporous Substrate and Bifunctional Linking Molecule, Journal of Materials Chemistry, 21 (2011) 4945-4952.
    [40] J.-L. Lin, Principles and Applications of Photocatalysis on TiO2, Journal of the Chinese Chemical Society, 60 (2002) 457-461.
    [41] M. A. Fox, M. T. Dulay, Heterogeneous Photocatalysis, Chemical Review , 83 (1995) 341-357.
    [42] E. García-López, G. Marcí, N. Serpone, H. Hidaka, Photoassisted Oxidation of the Recalcitrant Cyanuric Acid Substrate in Aqueous ZnO Suspensions, The Journal of Physical Chemistry C, 111 (2007) 18025-18032.
    [43] R. C. Hirt, R. G. Schmitt, Ultraviolet Absorption Spectra of Derivatives of Symmetric triazine—II: Oxo-triazines and their Acyclic Analogs, Spectrochimica Acta, 12 (1958) 127-138.
    [44] K. Damodaran, G. J. Sanjayan, P. R. Rajamohanan, S. Ganapathy, K. N. Ganesh, Solid State NMR of a Molecular Self-Assembly:  Multinuclear Approach to the Cyanuric Acid-Melamine System, Organic Letters, 3 (2001) 1921-1924.
    [45] V. Sangeetha, N. Kanagathara, R. Sumathi, N. Sivakumar, G. Anbalagan, Spectral and Thermal Degradation of Melamine Cyanurate, Journal of Materials, 2013 (2013) 262094.
    [46] J. Fan, J. T. Yates, Infrared Study of the Oxidation of Hexafluoropropene on TiO2, The Journal of Physical Chemistry, 98 (1994) 10621-10627.
    [47] C. N. Rusu, J. T. Yates, Photochemistry of NO Chemisorbed on TiO2 (110) and TiO2 Powders, The Journal of Physical Chemistry B, 104 (2000) 1729-1737.
    [48] J.-L. Lin, Y.-C. Lin, B.-C. Lin, P.-C. Lai, T.-E. Chien, S.-H. Li, Y.-F. Lin, Adsorption and Reactions on TiO2: Comparison of N,N-Dimethylformamide and Dimethylamine, The Journal of Physical Chemistry C, 118 (2014) 20291-20297.
    [49] R. Newman, R. M. Badger, Infrared Spectra of Cyanuric Acid and Deutero Cyanuric Acid, Journal of the American Chemical Society, 74 (1952) 3545-3548.
    [50] H. Rostkowska, L. Lapinski, M. J. Nowak, Analysis of the Normal Modes of Molecules with D3h symmetry: Infrared Spectra of Monomeric S-triazine and Cyanuric acid, Vibrational Spectroscopy, 49 (2009) 43-51.
    [51] Ts. N. Boginskaya, R. I. Spasskaya, A. I. Finkel'shtein, Investigation of the Structure of Hydroxymethyl Derivatives of Ammelide and Ammeline from their IR Spectra, Journal of Applied Spectroscopy, 22 (1975) 713-715.

    [52] L. Pérez-Manríquez, A. Cabrera, L.E. Sansores, R. Salcedo, Aromaticity in Cyanuric Acid, Journal of Molecular Modeling, 17 (2011) 1311-1315.
    [53] G. B. Seifer, Cyanuric Acid and Cyanurates, Russian Journal of Coordination Chemistry, 28 (2002) 301–324.
    [54] X. Liang, X. Pu, H. Zhou, N.-B. Wong, A. Tian, Keto–enol Tautomerization of Cyanuric Acid in the Gas Phase and in Water and Methanol, Journal of Molecular Structure: THEOCHEM, 816 (2007) 125-136.
    [55] L.-M. Liu, P. Crawford, P. Hu, The Interaction Between Adsorbed OH and O2 on TiO2 Surfaces, Progress in Surface Science, 84 (2009) 155-176.
    [56] H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, J. J. Ehrhardt, H. Catalette, Combined Investigation of Water Sorption on TiO2 rutile (110) Single Crystal Face: XPS vs. Periodic DFT, Surface Science, 601 (2007) 518-527.
    [57] C.-C. Chuang, W.-C. Wu, M.-X. Lee, J.-L. Lin, Adsorption and Photochemistry of CH3CN and CH3CONH2 on Powdered TiO2, Physical Chemistry Chemical Physics, 2 (2000) 3877-3882.
    [58] L.-F. Liao, W.-C. Wu, C.-C. Chuang, J.-L. Lin, FTIR Study of Adsorption and Reactions of Methylamine on Powdered TiO2, The Journal of Physical Chemistry B, 105 (2001) 5928-5934.
    [59] Y.-C. Lin, T.-E. Chien, K.-L. Li, J.-L. Lin, Comparison of the Thermal and Photochemical Reaction Pathways of Melamine on TiO2, The Journal of Physical Chemistry C, 119 (2015) 8645-8651.
    [60] M. A. Larrubia, G. Ramis, G. Busca, An FT-IR Study of the Adsorption and Oxidation of N-containing Compounds over Fe2O3-TiO2 SCR Catalysts, Applied Catalysis B: Environmental, 30 (2001) 101-110.
    [61] M. A. Larrubia, G. Ramis, G. Busca, An FT-IR Study of the Adsorption of Urea and Ammonia over V2O5–MoO3–TiO2 SCR Catalysts, Applied Catalysis B: Environmental, 27 (2000) L145-L151.
    [62] G. Piazzesi, O. Kröcher, M. Elsener, A. Wokaun, Adsorption and Hydrolysis of Isocyanic Acid on TiO2, Applied Catalysis B: Environmental, 65 (2006) 55-61.
    [63] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R. J. Willey, Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts, Journal of Catalysis, 157 (1995) 523-535.
    [64] J. C. Owrutsky, M. B. Pomfret, D. J. Barton, D. A. Kidwell, Fourier Transform Infrared Spectroscopy of Azide and Cyanate Ion Pairs in AOT Reverse Micelles, The Journal of Chemical Physics, 129 (2008) 024513.
    [65] Z. Yan, W.-L. Xue, Z.-X. Zeng, M.-R. Gu, Kinetics of Cyanuric Chloride Hydrolysis in Aqueous Solution, Industrial & Engineering Chemistry Research, 47 (2008) 5318-5322.
    [66] H. K. Reimschuessel, N. T. McDevitt, Infrared Spectra of Some 1,3,5-Triazine Derivatives, Journal of the American Chemical Society, 82 (1960) 3756-3762.
    [67] W. M. Padgett, W. F. Hamner, The Infrared Spectra of Some Derivatives of 1,3,5-Triazine, Journal of the American Chemical Society, 80 (1958) 803-808.
    [68] J. Goubeau, E. L. Jahn, A. Kreutzberger, C. Grundmann, Triazines. X. The Infrared and Raman Spectra of 1,3,5-Triazine, The Journal of Physical Chemistry, 58 (1954) 1078-1081.
    [69] Y. Suda, T. Morimoto, M. Nagao, Adsorption of Alcohols on Titanium Dioxide (Rutile) Surface, Langmuir, 3 (1987) 99-104.
    [70] J. E. Griffiths, D. E. Irish, Infrared anf Raman Spectra Of Cyanuric Fluoride, Canadian Journal of Chemistry, 42 (1964) 690-695.
    [71] M. Prabhaharan, A. R. Prabakaran, S. Gunasekaran, S. Srinivasan, DFT studies on Vibrational Spectra, HOMO–LUMO, NBO and Thermodynamic Function Analysis of Cyanuric Fluoride, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, Part B (2015) 494-503.
    [72] K. S. Finnie, D. J. Cassidy, J. R. Bartlett, J. L. Woolfrey, IR Spectroscopy of Surface Water and Hydroxyl Species on Nanocrystalline TiO2 Films, Langmuir, 17 (2001) 816-820.
    [73] S. T. King, J. H. Strope, Infrared Spectra of the Argon Matrix-Isolated Cyanamide, Cyanamide-d2, and Carbodiimide, The Journal of Chemical Physics, 54 (1971) 1289-1295.
    [74] M. Birk, M. Winnewisser, The Rotation-vibration Spectrum of Gaseous Carbodiimide (HNCNH), Chemical Physics Letters, 123 (1986) 386-389.
    [75] P. Hauck, A. Jentys, J.A. Lercher, On the Quantitative Aspects of Hydrolysis of Isocyanic Acid on TiO2, Catalysis Today, 127 (2007) 165-175.
    [76] F. Duvernay, T. Chiavassa, F. Borget, J.-P. Aycard, Experimental Study of Water-Ice Catalyzed Thermal Isomerization of Cyanamide into Carbodiimide:  Implication for Prebiotic Chemistry, Journal of the American Chemical Society, 126 (2004) 7772-7773.
    [77] A. M. Bernhard, I. Czekaj, M. Elsener, O. Kröcher, Adsorption and Catalytic Thermolysis of Gaseous Urea on Anatase TiO2 Studied by HPLC Analysis, DRIFT Spectroscopy and DFT Calculations, Applied Catalysis B: Environmental, 134–135 (2013) 316-323.
    [78] M. L. Kilpatrick, A Mechanism for the Hydrolysis of Cyanamide in Acid Solution, Journal of the American Chemical Society, 69 (1947) 40-46.
    [79] M. J. Sullivan, M. L. Kilpatrick, The Hydrolysis of Cyanamide in Acid Solution, Journal of the American Chemical Society, 67 (1945) 1815-1823.
    [80] L. Stradella, M. Argentero, A Study of the Thermal Decomposition of Urea, of Related Compounds and Thiourea Using DSC and TG-EGA, Thermochimica Acta, 219 (1993) 315-323.
    [81] G. N. Schading, P. Roth, Sublimation and Dissociation of Cyanuric Acid Particles and Dissociation of Isocyanic Acid Vapor, Symposium (International) on Combustion, 27 (1998) 245-251.
    [82] G. Fischer, J. Geith, T. M. Klapötke, B. Krumm, Synthesis, Properties and Dimerization Study of Isocyanic Acid, Zeitschrift für Naturforschung B, 57b (2002) 19-24.
    [83] T. A. Tetzlaff, W. S. Jenks, Stability of Cyanuric Acid to Photocatalytic Degradation, Organic Letters, 1 (1999) 463-466.
    [84] N. Watanabe, S. Horikoshi, H. Hidaka, N. Serpone, On the Recalcitrant Nature of the Triazinic Ring Species, Cyanuric Acid, to Degradation in Fenton Solutions and in UV-illuminated TiO2 (naked) and Fluorinated TiO2 Aqueous Dispersions, Journal of Photochemistry and Photobiology A: Chemistry, 174 (2005) 229-238.
    [85] C. S. Turchi, D. F. Ollis, Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack, Journal of Catalysis, 122 (1990) 178-192.

    下載圖示 校內:2020-07-27公開
    校外:2020-07-27公開
    QR CODE