簡易檢索 / 詳目顯示

研究生: 歐慈修
Ou, Tzu-Hsiu
論文名稱: 以Bennett機構組合之空間多模式7R機構位置分析
Position Analysis of a Multiple-Mode Bennett-Based 7R Linkage
指導教授: 黃金沺
Huang, Chintien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 位置分析矛盾機構多模式機構
外文關鍵詞: Reconfigurable mechanisms, Bennett, 7r, Position Analysis, Paradoxical mechanisms
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對多模式空間7R機構作位置分析探討其運動特性。多模式空間7R是利用兩個任意的Bennett機構,重合其中一個接頭所組成。用意是將Bennett機構的構形保留於7R機構中,使7R含有Bennett機構的運動型態。
    本論文利用Raghavan和Roth分析開放6R機械臂的解析解,解決閉迴路7R機構的逆向位置關係。對此多模式7R機構進行位置分析,使輸入桿繞行一周,得到所有可能的可行範圍內,各接頭對輸入角的運動曲線。
    多模式7R機構的運動曲線明顯表現此種機構有三種運動模式,兩組Bennett機構的過拘束運動及一般7R模式。機構可於交會構形藉著接頭鎖住或轉動作模式間的轉換,到達其他分支。
    藉著模式轉換,一般7R經由Bennett機構單調連續的運動,避開原本無法越過的奇異構形,而毋須將整個連桿拆解重組。由於Bennett機構的運動特性,將7R的運動版圖放大至360 所有可能的可行範圍。

    This thesis deals with the position analysis of a single-DOF single-loop 7R mechanism with multiple motion modes. The 7R mechanism is constructed by combining two Bennett 4R linkages with a common joint. The common joint is taken as the input joint of the 7R linkage. As a result, the 7R linkage features three motion modes: two Bennett modes and a 7R mode.
    By employing the closed-form solution to the inverse kinematics of 6R manipulators, all feasible configurations of the 7R linkage can be obtained as the driving crank makes a full rotation. And the result of the position analysis is presented in six plots, which give six joint angles against the driving joint angle.
    According to the result of the position analysis, the multiple-mode linkage can undergo three operation modes, including two Bennett modes and a general 7R mode. These modes can be switched by locking or triggering joints at connecting configurations. As a result, singularity configurations of the 7R mechanism can avoided via the simple motion of Bennett mechanism without disconnecting and reassembling the 7R mechanism.

    摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅸ 符號說明 Ⅹ 第一章 緒言 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 4 1-4 本文架構 5 第二章 基本概念 2-1 D-H齊次轉換矩陣 6 2-2 剛體位移螺旋 9 2-2-1 線座標 9 2-2-2螺旋與螺旋系統 10 2-2-3 剛體位移螺旋 11 2-3 具迴轉對的過度拘束機構 12 2-4 Bennett 4R機構 13 2-4-1 Bennett機構之幾何關係 13 2-4-2 螺旋座標之建立 16 2-5 平面4R機構位置關係及其奇異構形 16 第三章 一般7R及其奇異構形與多模式空間7R機構之組合 3-1 一般7R機構及其奇異構形 24 3-2 多模式空間7R機構的組合方法 26 3-2-1 基本工具 26 3-2-2 多模式空間7R機構之組合方法 28 3-3 多模式空間7R機構的組合種類 33 3-4 結果與討論 39 第四章 多模式空間7R機構之位置分析 4-1 空間7R機構之解析解 41 4-2多模式空間7R機構之位置分析 47 4-3多模式空間7R機構之三種運動模式 53 4-4多模式空間7R機構之模式轉換與特性 55 4-5 結論 57 第五章 多模式空間7R機構之相關比較 5-1使用SolidWorks模擬驗證 58 5-2多模式7R機構例與一般7R機構位置分析結果之比較 62 5-3結論 73 第六章 結論與未來方向 6-1 結論 74 6-2 未來方向 75 參考文獻 77 附錄 80

    1. Bennett, G. T., 1903, “A New Mechanism,” Engineering, Vol. 76, pp. 777-778.
    2. Baker, J. E., 1979, “The Bennett, Goldberg and Myard Linkages in Perspective,” Mechanism and Machine Theory, Vol. 14, pp. 239-253.
    3. Baker, J. E., 1993, “A Comparative Survey of the Bennett-Based, 6-Revolute Kinematic Loops,” Mechanism and Machine Theory, Vol. 28, No. 1, pp. 83-96.
    4. Cleghorn, W. L., 2005, Mechanics of Machine, Oxford University Press.
    5. Denavit, J. and Hartenberg, R. S., 1955, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME Journal of Applied Mechanics, Vol. 77, pp. 215-221.
    6. Galletti, C. and Fanghella, P., 2001, “Single-Loop Kinematotropic Mechanisms,” Mechanism and Machine Theory, 36(6), pp. 743-761.
    7. Fanghella, P., Galleti, C., and Gianotti, E., 2006, “Parallel Robots That Change Their Group of Motion,” Advances in Robot Kinematics, Springer, pp. 49-56.
    8. Huang, C., 1997, “The Cylindroid Associated with Finite Motions of the Bennett Mechanism,” ASME Journal of Mechanical Design, 119, pp. 521-524.
    9. Huang,C. Sun, C.C. 2000. “An Investigation of Screw Systems in the Finite Displacements of Bennett-Based 6R Linkages,” ASME Journal of Mechanical Design, 119, pp. 426-430.
    10. Kong, X. and Gosselin, C. M. 2004, “Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators,” International Journal of Robotics Research, 23(3), pp. 237–245.
    11. Kong, X., Gosselin, C. M., and Richard, P.-L., 2007, “Type Synthesis of Parallel Mechanisms with Multiple Operation Modes,” ASME Journal of Mechanical Design, 129(7), pp. 595–601.
    12. Kong, X. and Huang, C., 2009, “Type Synthesis of Single-DOF Single-Loop Mechanisms with Two Operation Modes,” to be presented at the ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, UK, June 22-24, 2009.
    13. Lee, H. Y. and Liang, C. G., 1988, “Displacement Analysis of the General Spatial 7-Link 7R Mechanism,” Mechanism and Machine Theory, Vol. 23, No. 3, pp. 219-226.
    14. Waldron, K. J., 1968, “Hybrid Overconstrained Linkages,” Journal of Mechanism, 2, pp. 73-78.
    15. Waldron, K. J. and Kinzel, G. L., 2004, Kinematics, Dynamics, and Design of Machinery, Wiley, John Wiley & Sons, Inc.
    16. Wohlhart, K., 1996, “Kinematotropic linkages,” Recent Advances in Robot Kinematics, J. Lenarcic and V. Parenti-Castelli (Eds). Kluwer Academic, Dordrecht, The Netherlands, pp. 359-368.
    17. Raghavan, M. and Roth, B., 1989, “Kinematic Analysis of the 6R Manipulator of General Geometry,” Proc. 5th International Symposium on Robotics Research, edited by H. Miura and S. Arimoto, MIT Press, Cambridge, MA; preprint 1989, final 1990.
    18. Tsai, L. W. and Morgan, A., 1985, “Solving the Kinematics of the Most General Six and Five-Degree-of-Freedom Manipulators by Continuation Methods,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp. 189-200.
    19. Tsai, L. W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulator, Wiley-Interscience Publication, John Wiley & Sons, Inc.
    20. 劉慈恩, Bennett相關過拘束機構之有限運動線性性質研究,1996年六月,國立成功大學機械工程研究所碩士論文。
    21. 孫啟智,Bennett-Based 6R與Bricard 6R 相關過拘束機構有線運動線性性質之探討,1998年七月,國立成功大學機械工程研究所碩士論文。
    22. 田昆明,空間雙接頭連桿尺寸合成問題的一些數值解,2000年七月,國立成功大學機械工程研究所碩士論文。
    23. 高子翔,機械臂保守剛性矩陣轉換之模擬,2001年八月,國立成功大學機械工程研究所碩士論文。
    24. 郭武彰,點與線之有限位移螺旋的線幾何研究,2009年四月,國立成功大學機械工程研究所博士論文。

    下載圖示
    2014-07-07公開
    QR CODE