| 研究生: |
蕭傳勲 Hsiao, Chuan-Hsun |
|---|---|
| 論文名稱: |
利用數位光處理3D列印技術製作基於疏水性深共熔溶劑和原位相分離的多功能聚合物凝膠 Versatile polymer gels based on hydrophobic deep eutectic solvents and in situ phase separation for digital light processing 3D printing |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 3D列印 、數位光處理 、高分子凝膠 、深共熔溶劑 、相分離 、自修復材料 |
| 外文關鍵詞: | 3D printing, digital light processing, polymer gels, deep eutectic solvent, phase separation, self-healing materials |
| 相關次數: | 點閱:55 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
源自深共熔溶劑的共熔凝膠是個新興的材料。擁有著優異的光學、機械、穩定性。因此在在軟性設備應用中顯示出巨大的潛力。然而,由於深共熔溶劑對水的敏感度較高,將其暴露於大氣下長時間會造成其變質,尤其是應用於3D列印當中。因此開發一種對環境穩定的共熔凝膠仍然具有挑戰性。
本研究探討了使用數位光處理和基於疏水性深共熔溶劑的樹脂來製造電容式感測器的介電層。所使用的樹脂是由薄荷醇和癸酸組成的第 V 型疏水性深共熔溶劑。藉由此樹脂中兩種單體異丙基丙烯醯胺和丙烯酸的共聚合,可形成透明凝膠。深共熔溶劑和異丙基丙烯醯胺之間的強氫鍵以及軟鏈段和硬鏈段的相分離可實現快速光聚合,無需化學交聯劑即可形成堅韌的凝膠。與有機凝膠相比,共熔凝膠具有顯著的韌性和自癒特性。此外,該凝膠具有高效的能量耗散和快速的自我恢復能力。最後,我們利用3D列印製造具有金字塔狀的微結構介電層。這種結構顯著增強了結構的局部變形,從而提高了靈敏度。這項研究展示了3D列印疏水性深共熔溶劑的簡單策略,從而透過DLP技術開發出高韌性和自修復材料。
Eutectogels derived from deep eutectic solvent (DES) are emerging as promising materials, notable for their excellent optical, mechanical, and stable properties. These qualities make them highly suitable for applications in flexible devices. However, the high sensitivity of most DES to water poses a significant challenge. Prolonged exposure to the atmosphere can lead to deterioration, which is particularly problematic in 3D printing applications. Thus, developing environmentally stable eutectogels remains a critical challenge.
This study explores the fabrication of dielectric layers for capacitive sensors using digital light processing (DLP) with hydrophobic DES-based resins. The resin used is a type V hydrophobic DES composed of menthol and decanoic acid. It is polymerized with two monomers, N-isopropylacrylamide (NIPAm) and acrylic acid (AAc), resulting in a transparent gel. The strong hydrogen bonds between DES and NIPAm and the phase separation of soft and glassy segments enable rapid photopolymerization, forming a tough gel without chemical crosslinkers. Compared to organogels, DES ionogels offer significant toughness and self-healing properties. Additionally, the gel demonstrates efficient energy dissipation and rapid self-recovery. Finally, the dielectric layer with a pyramid microstructure is fabricated using 3D printing. This structure significantly enhanced the local deformation of the dielectric layer, thereby improving the sensitivity of the sensor. This study displays a straightforward strategy for 3D printing hydrophobic DES gels, leading to the development of highly tough and self-healing materials through DLP technology.
1. Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent progress in biopolymer-based hydrogel materials for biomedical applications. International Journal of Molecular Sciences. 2022, 23 (3), 1415.
2. Harito, C.; Utari, L.; Putra, B. R.; Yuliarto, B.; Purwanto, S.; Zaidi, S. Z. J.; et al. Review—the development of wearable polymer-based sensors: Perspectives. Journal of The Electrochemical Society. 2020, 167 (3), 037566.
3. Odent, J.; Wallin, T. J.; Pan, W.; Kruemplestaedter, K.; Shepherd, R. F.; Giannelis, E. P. Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels. Advanced Functional Materials. 2017, 27 (33), 1701807.
4. Zhao, X.; Chen, X.; Yuk, H.; Lin, S.; Liu, X.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chemical Reviews. 2021, 121 (8), 4309.
5. Zhan, Y.; Fu, W.; Xing, Y.; Ma, X.; Chen, C. Advances in versatile anti-swelling polymer hydrogels. Materials Science and Engineering: C. 2021, 127, 112208.
6. Wu, F.; Pang, Y.; Liu, J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nature Communications. 2020, 11 (1), 4502.
7. Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments. Materials Horizons. 2021, 8 (2), 351.
8. Gomez-Florit, M.; Pardo, A.; Domingues, R. M.; Graça, A. L.; Babo, P. S.; Reis, R. L.; et al. Natural-based hydrogels for tissue engineering applications. Molecules. 2020, 25 (24), 5858.
9. Alven, S.; Aderibigbe, B. A. Chitosan and cellulose-based hydrogels for wound management. International Journal of Molecular Sciences. 2020, 21 (24), 9656.
10. Nasution, H.; Harahap, H.; Dalimunthe, N. F.; Ginting, M. H. S.; Jaafar, M.; Tan, O. O. H.; et al. Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review. Gels. 2022, 8 (9), 568.
11. Eslami, P.; Rossi, F.; Fedeli, S. Hybrid nanogels: Stealth and biocompatible structures for drug delivery applications. Pharmaceutics. 2019, 11 (2), 71.
12. Hendi, A.; Umair Hassan, M.; Elsherif, M.; Alqattan, B.; Park, S.; Yetisen, A. K.; et al. Healthcare applications of pH-sensitive hydrogel-based devices: A review. International Journal of Nanomedicine. 2020, 2020 (15), 3887.
13. Zhang, Y.; Zhao, Y.; Peng, Z.; Yao, B.; Alsaid, Y.; Hua, M.; et al. Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity. ACS Materials Letters. 2021, 3 (10), 1477.
14. Urata, C.; Nagashima, H.; Hatton, B. D.; Hozumi, A. Transparent organogel films showing extremely efficient and durable anti-icing performance. ACS Applied Materials & Interfaces. 2021, 13 (24), 28925.
15. Lv, J.; Yao, X.; Zheng, Y.; Wang, J.; Jiang, L. Antiadhesion organogel materials: From liquid to solid. Advanced Materials. 2017, 29 (45), 1703032.
16. Liu, H.; Zhang, P.; Liu, M.; Wang, S.; Jiang, L. Organogel-based thin films for self-cleaning on various surfaces. Advanced Materials. 2013, 25 (32), 4477.
17. Zhang, H.; Liang, Y.; Wang, P.; Zhang, D. Design of slippery organogel layer with room-temperature self-healing property for marine anti-fouling application. Progress in Organic Coatings. 2019, 132, 132.
18. Kuzina, M. A.; Kartsev, D. D.; Stratonovich, A. V.; Levkin, P. A. Organogels versus hydrogels: Advantages, challenges, and applications. Advanced Functional Materials. 2023, 33 (27), 2301421.
19. Marr, P. C.; Marr, A. C. Ionic liquid gel materials: Applications in green and sustainable chemistry. Green Chemistry. 2016, 18 (1), 105.
20. Ye, Y.-S.; Rick, J.; Hwang, B.-J. Ionic liquid polymer electrolytes. Journal of Materials Chemistry A. 2013, 1 (8), 2719.
21. Yang, Z.; Huang, R.; Zheng, B.; Guo, W.; Li, C.; He, W.; et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Advanced Science. 2021, 8 (8), 2003627.
22. Ren, Y.; Guo, J.; Liu, Z.; Sun, Z.; Wu, Y.; Liu, L.; et al. Ionic liquid–based click-ionogels. Science Advances. 2019, 5 (8), eaax0648.
23. Luo, Z.; Li, W.; Yan, J.; Sun, J. Roles of ionic liquids in adjusting nature of ionogels: A mini review. Advanced Functional Materials. 2022, 32 (32), 2203988.
24. Liu, Y.; Friesen, J. B.; McAlpine, J. B.; Lankin, D. C.; Chen, S.-N.; Pauli, G. F. Natural deep eutectic solvents: Properties, applications, and perspectives. Journal of Natural Products. 2018, 81 (3), 679.
25. Mbous, Y. P.; Hayyan, M.; Hayyan, A.; Wong, W. F.; Hashim, M. A.; Looi, C. Y. Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnology Advances. 2017, 35 (2), 105.
26. Zubeir, L. F.; Lacroix, M. H. M.; Kroon, M. C. Low transition temperature mixtures as innovative and sustainable CO2 capture solvents. The Journal of Physical Chemistry B. 2014, 118 (49), 14429.
27. El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and properties of deep eutectic solvents: A review. Environmental Chemistry Letters. 2021, 19, 3397.
28. Hansen, F.; Øiestad, E. L.; Pedersen-Bjergaard, S. Bioanalysis of pharmaceuticals using liquid-phase microextraction combined with liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2020, 189, 113446.
29. Ma, Y.; Yang, Y.; Li, T.; Hussain, S.; Zhu, M. Deep eutectic solvents as an emerging green platform for the synthesis of functional materials. Green Chemistry. 2024, 26 (7), 3627.
30. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chemical Reviews. 2021, 121 (3), 1232.
31. Quintana, A. A.; Sztapka, A. M.; Santos Ebinuma, V. d. C.; Agatemor, C. Enabling sustainable chemistry with ionic liquids and deep eutectic solvents: A fad or the future? Angewandte Chemie International Edition. 2022, 61 (37), e202205609.
32. Alonso, D. A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I. M.; Ramón, D. J. Deep eutectic solvents: The organic reaction medium of the century. European Journal of Organic Chemistry. 2016, 2016 (4), 612.
33. Bai, C.; Wei, Q.; Ren, X. Selective extraction of collagen peptides with high purity from cod skins by deep eutectic solvents. ACS Sustainable Chemistry & Engineering. 2017, 5 (8), 7220.
34. Tong, Z.; Meng, J.; Liu, S.; Liu, Y.; Zeng, S.; Wang, L.; et al. Room temperature dissolving cellulose with a metal salt hydrate-based deep eutectic solvent. Carbohydrate Polymers. 2021, 272, 118473.
35. Adhikari, L.; Larm, N. E.; Bhawawet, N.; Baker, G. A. Rapid microwave-assisted synthesis of silver nanoparticles in a halide-free deep eutectic solvent. ACS Sustainable Chemistry & Engineering. 2018, 6 (5), 5725.
36. Wang, Y.; Liu, Y.; Plamthottam, R.; Tebyetekerwa, M.; Xu, J.; Zhu, J.; et al. Highly stretchable and reconfigurable ionogels with unprecedented thermoplasticity and ultrafast self-healability enabled by gradient-responsive networks. Macromolecules. 2021, 54 (8), 3832.
37. Zhang, H.; Tang, N.; Yu, X.; Li, M.-H.; Hu, J. Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions. Advanced Functional Materials. 2022, 32 (41), 2206305.
38. Li, Y.; Kankala, R. K.; Wu, L.; Chen, A.-Z.; Wang, S.-B. 3D-printed photocurable resin with synergistic hydrogen bonding based on deep eutectic solvent. ACS Applied Polymer Materials. 2023, 5 (1), 991.
39. Wang, Y.; Wang, J.; Ma, Z.; Yan, L. A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation. ACS Applied Materials & Interfaces. 2021, 13 (45), 54409.
40. Li, C.-Y.; Yu, S.-S. Efficient visible-light-driven RAFT polymerization mediated by deep eutectic solvents under an open-to-air environment. Macromolecules. 2021, 54 (21), 9825.
41. Lin, L.; Li, R. a.; Chen, G.; Wang, X.; Cheng, J.; Zhao, J.; et al. Impact of hydrogen bonding interaction energy on the polymerization kinetics of polymerizable deep eutectic solvent monomers. Polymer Chemistry. 2024, 15 (8), 783.
42. Lai, C.-W.; Yu, S.-S. 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Applied Materials & Interfaces. 2020, 12 (30), 34235.
43. Lai, P.-C.; Ren, Z.-F.; Yu, S.-S. Thermally induced gelation of cellulose nanocrystals in deep eutectic solvents for 3D printable and self-healable ionogels. ACS Applied Polymer Materials. 2022, 4 (12), 9221.
44. Huang, C.-W.; Wen, S.-C.; Hsiao, C.-H.; Zhang, C.-Z.; Lin, K.-C.; Yu, S.-S. Digital light processing of soft robotic gripper with high toughness and self-healing capability achieved by deep eutectic solvents. Advanced Functional Materials. 2024, 34 (24), 2314101.
45. Wu, L.; Gao, Y.; Wang, R.; Yu, K.; Ma, X.; Fang, Y.; et al. Extremely tough and stretchable hydrophobic deep eutectic solvent-based gels with strong adhesion and moisture resistance for wearable strain sensors. ACS Applied Polymer Materials. 2023, 5 (12), 10469.
46. Li, M.; Liu, Z.; Hu, Y.; Li, R. a.; Cao, Y. A hydrophobic eutectogel with excellent underwater self-adhesion, self-healing, transparency, stretchability, ionic conductivity, and fully recyclability. Chemical Engineering Journal. 2023, 472, 145177.
47. Du, D.; Zhou, J.; Kaneko, T.; Dong, W.; Chen, M.; Shi, D. Stretchable and hydrophobic eutectogel for underwater human health monitoring based on hierarchical dynamic interactions. Chemical Engineering Journal. 2023, 474, 145704.
48. Gao, Y.; Wu, L.; Zhou, J.; Ma, X.; Fang, Y.; Fang, X.; et al. Hydrophobic deep eutectic solvent-based ionic conductive gels with highly stretchable, fatigue-resistant and adhesive performances for reliable flexible strain sensors. Journal of Applied Polymer Science. 2023, 140 (2), e53285.
49. van Osch, D. J.; Zubeir, L. F.; van den Bruinhorst, A.; Rocha, M. A.; Kroon, M. C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chemistry. 2015, 17 (9), 4518.
50. de Araujo Lima e Souza, G.; Di Pietro, M. E.; Vanoli, V.; Panzeri, W.; Briatico-Vangosa, F.; Castiglione, F.; et al. Hydrophobic eutectogels: A new outfit for nonionic eutectic solvents. Materials Today Chemistry. 2023, 29, 101402.
51. Li, R. a.; Li, M.; Liu, Z.; Cao, Y. Water-insensitive self-adhesive elastomers derived from hydrophobic deep eutectic polymers. Chemical Communications. 2022, 58 (100), 13975.
52. Chai, C.; Ma, L.; Chu, Y.; Li, W.; Qian, Y.; Hao, J. Extreme-environment-adapted eutectogel mediated by heterostructure for epidermic sensor and underwater communication. Journal of Colloid and Interface Science. 2023, 638, 439.
53. Abranches, D. O.; Martins, M. A. R.; Silva, L. P.; Schaeffer, N.; Pinho, S. P.; Coutinho, J. A. P. Phenolic hydrogen bond donors in the formation of nonionic deep eutectic solvents: The quest for type V DES. Chemical Communications. 2019, 55 (69), 10253.
54. Prabhune, A.; Dey, R. Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids. 2023, 379, 121676.
55. Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chemical Reviews. 2017, 117 (15), 10212.
56. Jiang, Z.; Diggle, B.; Tan, M. L.; Viktorova, J.; Bennett, C. W.; Connal, L. A. Extrusion 3D printing of polymeric materials with advanced properties. Advanced Science. 2020, 7 (17), 2001379.
57. Lewis, J. A.; Smay, J. E.; Stuecker, J.; Cesarano, J. Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society. 2006, 89 (12), 3599.
58. Zhao, W.; Wang, Z.; Zhang, J.; Wang, X.; Xu, Y.; Ding, N.; et al. Vat photopolymerization 3D printing of advanced soft sensors and actuators: From architecture to function. Advanced Materials Technologies. 2021, 6 (8), 2001218.
59. Zhou, L.-Y.; Fu, J.; He, Y. A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials. 2020, 30 (28), 2000187.
60. Zhao, Z.; Tian, X.; Song, X. Engineering materials with light: Recent progress in digital light processing based 3D printing. Journal of Materials Chemistry C. 2020, 8 (40), 13896.
61. Jiang, T.; Yan, B.; Jiang, M.; Xu, B.; Gao, S.; Xu, Y.; et al. Study of forming performance and characterization of DLP 3D printed parts. Materials. 2023, 16 (10), 3847.
62. Song, C.; Zhao, Q.; Xie, T.; Wu, J. DLP 3D printing of electrically conductive hybrid hydrogels via polymerization-induced phase separation and subsequent in situ assembly of polypyrrole. Journal of Materials Chemistry A. 2024, 12 (9), 5348.
63. Wang, Z.; Cui, H.; Liu, M.; Grage, S. L.; Hoffmann, M.; Sedghamiz, E.; et al. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Advanced Materials. 2022, 34 (11), 2107791.
64. Zhang, M.; Tao, X.; Yu, R.; He, Y.; Li, X.; Chen, X.; et al. Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics. Journal of Materials Chemistry A. 2022, 10 (22), 12005.
65. Lim, K. S.; Galarraga, J. H.; Cui, X.; Lindberg, G. C. J.; Burdick, J. A.; Woodfield, T. B. F. Fundamentals and applications of photo-cross-linking in bioprinting. Chemical Reviews. 2020, 120 (19), 10662.
66. Van de Voorde, K. M.; Kozawa, S. K.; Mack, J. A.; Thompson, C. B. Influence of cross-linker functionality and photoinitiator loading on network connectivity and actuation in 3D-printed model thermosets. ACS Applied Polymer Materials. 2024, 6 (7), 3918.
67. Ligon-Auer, S. C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: A review. Polymer Chemistry. 2016, 7 (2), 257.
68. Taylor, D. L.; in het Panhuis, M. Self-healing hydrogels. Advanced Materials. 2016, 28 (41), 9060.
69. Tuncaboylu, D. C.; Argun, A.; Algi, M. P.; Okay, O. Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains. Polymer. 2013, 54 (23), 6381.
70. Gyarmati, B.; Szilágyi, B. Á.; Szilágyi, A. Reversible interactions in self-healing and shape memory hydrogels. European Polymer Journal. 2017, 93, 642.
71. Fang, Z.; Song, H.; Zhang, Y.; Jin, B.; Wu, J.; Zhao, Q.; et al. Modular 4D printing via interfacial welding of digital light-controllable dynamic covalent polymer networks. Matter. 2020, 2 (5), 1187.
72. Yu, K.; Xin, A.; Du, H.; Li, Y.; Wang, Q. Additive manufacturing of self-healing elastomers. NPG Asia Materials. 2019, 11 (1), 7.
73. Abdullah, T.; Okay, O. 4D printing of body temperature-responsive hydrogels based on poly(acrylic acid) with shape-memory and self-healing abilities. ACS Applied Bio Materials. 2023, 6 (2), 703.
74. Chen, H.; Hao, B.; Ge, P.; Chen, S. Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction. Polymer Chemistry. 2020, 11 (29), 4741.
75. Caprioli, M.; Roppolo, I.; Chiappone, A.; Larush, L.; Pirri, C. F.; Magdassi, S. 3D-printed self-healing hydrogels via digital light processing. Nature Communications. 2021, 12 (1), 2462.
76. Zirkl, M.; Scheipl, G.; Stadlober, B.; Rendl, C.; Greindl, P.; Haller, M.; et al. PyzoFlex: A printed piezoelectric pressure sensing foil for human machine interfaces. Organic Field-Effect Transistors XII; and Organic Semiconductors in Sensors and Bioelectronics VI. 2013, 8831, 134.
77. Bauer, S.; Bauer‐Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Advanced Materials. 2014, 26 (1), 149.
78. Park, J.; Lee, Y.; Hong, J.; Lee, Y.; Ha, M.; Jung, Y.; et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano. 2014, 8 (12), 12020.
79. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials. 2016, 26 (11), 1678.
80. Li, J.; Bao, R.; Tao, J.; Peng, Y.; Pan, C. Recent progress in flexible pressure sensor arrays: From design to applications. Journal of Materials Chemistry C. 2018, 6 (44), 11878.
81. Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; et al. Recent developments for flexible pressure sensors: A review. Micromachines. 2018, 9 (11), 580.
82. Ju, M.; Dou, Z.; Li, J.-W.; Qiu, X.; Shen, B.; Zhang, D.; et al. Piezoelectric materials and sensors for structural health monitoring: Fundamental aspects, current status, and future perspectives. Sensors. 2023, 23 (1), 543.
83. Wu, Y.; Ma, Y.; Zheng, H.; Ramakrishna, S. Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design. 2021, 211, 110164.
84. Vijayakanth, T.; Shankar, S.; Finkelstein-Zuta, G.; Rencus-Lazar, S.; Gilead, S.; Gazit, E. Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews. 2023, 52 (17), 6191.
85. Chen, W.; Yan, X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science & Technology. 2020, 43, 175.
86. Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S. H. Recent progress in flexible and stretchable piezoresistive sensors and their applications. Journal of the Electrochemical Society. 2020, 167 (3), 037561.
87. Ma, Z.; Zhang, Y.; Zhang, K.; Deng, H.; Fu, Q. Recent progress in flexible capacitive sensors: Structures and properties. Nano Materials Science. 2023, 5 (3), 265.
88. Rivadeneyra, A.; López-Villanueva, J. A. Recent advances in printed capacitive sensors. Micromachines. 2020, 11 (4), 367.
89. Su, M.; Li, P.; Liu, X.; Wei, D.; Yang, J. Textile-based flexible capacitive pressure sensors: A review. Nanomaterials. 2022, 12 (9), 1495.
90. Li, T.; Luo, H.; Qin, L.; Wang, X.; Xiong, Z.; Ding, H.; et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small. 2016, 12 (36), 5042.
91. Park, S. W.; Das, P. S.; Park, J. Y. Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Organic Electronics. 2018, 53, 213.
92. Yoon, S. G.; Park, B. J.; Chang, S. T. Highly sensitive piezocapacitive sensor for detecting static and dynamic pressure using ion-gel thin films and conductive elastomeric composites. ACS Applied Materials & Interfaces. 2017, 9 (41), 36206.
93. Li, R.; Zhou, Q.; Bi, Y.; Cao, S.; Xia, X.; Yang, A.; et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sensors and Actuators A: Physical. 2021, 321, 112425.
94. Cheng, A. J.; Wu, L.; Sha, Z.; Chang, W.; Chu, D.; Wang, C. H.; et al. Recent advances of capacitive sensors: Materials, microstructure designs, applications, and opportunities. Advanced Materials Technologies. 2023, 8 (11), 2201959.
95. Qin, J.; Yin, L.-J.; Hao, Y.-N.; Zhong, S.-L.; Zhang, D.-L.; Bi, K.; et al. Flexible and stretchable capacitive sensors with different microstructures. Advanced Materials. 2021, 33 (34), 2008267.
96. Shao, T.; Wu, J.; Zhang, Y.; Cheng, Y.; Zuo, Z.; Lv, H.; et al. Highly sensitive conformal pressure sensing coatings based on thermally expandable microspheres. Advanced Materials Technologies. 2020, 5 (5), 2000032.
97. Ruth, S. R. A.; Beker, L.; Tran, H.; Feig, V. R.; Matsuhisa, N.; Bao, Z. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Advanced Functional Materials. 2020, 30 (29), 1903100.
98. Zeng, X.; Wang, Z.; Zhang, H.; Yang, W.; Xiang, L.; Zhao, Z.; et al. Tunable, ultrasensitive, and flexible pressure sensors based on wrinkled microstructures for electronic skins. ACS Applied Materials & Interfaces. 2019, 11 (23), 21218.
99. Asghar, W.; Li, F.; Zhou, Y.; Wu, Y.; Yu, Z.; Li, S.; et al. Piezocapacitive flexible e-skin pressure sensors having magnetically grown microstructures. Advanced Materials Technologies. 2020, 5 (2), 1900934.
100. Guo, Y.; Gao, S.; Yue, W.; Zhang, C.; Li, Y. Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method. ACS Applied Materials & Interfaces. 2019, 11 (51), 48594.
101. Wang, Z.; Heck, M.; Yang, W.; Wilhelm, M.; Levkin, P. A. Tough PEGgels by in situ phase separation for 4D printing. Advanced Functional Materials. 2024, 34 (20), 2300947.
102. Zhang, J.; Chu, L.-Y.; Cheng, C.-J.; Mi, D.-F.; Zhou, M.-Y.; Ju, X.-J. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties. Polymer. 2008, 49 (10), 2595.
103. Tong, Q. B.; Du, C.; Wei, Z.; Du, M.; Wu, Z. L.; Zheng, Q. Synergic influences of network topologies and associative interactions on the microstructures and bulk performances of hydrogels. Journal of Materials Chemistry B. 2021, 9 (48), 9863.
104. XináHou, L.; PengáHao, X.; NanáZhu, C.; LiangáWu, Z. Multi-level encryption of information in morphing hydrogels with patterned fluorescence. Soft Matter. 2022, 18 (11), 2149.
105. Hirashima, Y.; Sato, H.; Suzuki, A. ATR-FTIR spectroscopic study on hydrogen bonding of poly(N-isopropylacrylamide-co-sodium acrylate) gel. Macromolecules. 2005, 38 (22), 9280.
106. Sagle, L. B.; Zhang, Y.; Litosh, V. A.; Chen, X.; Cho, Y.; Cremer, P. S. Investigating the hydrogen-bonding model of urea denaturation. Journal of the American Chemical Society. 2009, 131 (26), 9304.
107. Tanaka, Y.; Shinohe, R.; Yuki, S.; Ohashi, T.; Mori, H. Green production of ion-conductive and self-healable polymers by photoinduced radical polymerization of ternary deep eutectic monomers. Polymer Chemistry. 2023, 14 (39), 4538.
108. Zhang, X. N.; Du, C.; Wang, Y. J.; Hou, L. X.; Du, M.; Zheng, Q.; et al. Influence of the α-methyl group on elastic-to-glassy transition of supramolecular hydrogels with hydrogen-bond associations. Macromolecules. 2022, 55 (17), 7512.
109. Wang, Y. J.; Zhang, X. N.; Song, Y.; Zhao, Y.; Chen, L.; Su, F.; et al. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chemistry of Materials. 2019, 31 (4), 1430.
110. Lin, P.; Ma, S.; Wang, X.; Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Advanced Materials. 2015, 27 (12), 2054.
111. Yang, Y.; Urban, M. W. Self-healing of polymers via supramolecular chemistry. Advanced Materials Interfaces. 2018, 5 (17), 1800384.
112. van Osch, D. J. G. P.; Dietz, C. H. J. T.; van Spronsen, J.; Kroon, M. C.; Gallucci, F.; van Sint Annaland, M.; et al. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustainable Chemistry & Engineering. 2019, 7 (3), 2933.
113. Phaechamud, T.; Tuntarawongsa, S.; Charoensuksai, P. Evaporation behavior and characterization of eutectic solvent and ibuprofen eutectic solution. AAPS PharmSciTech. 2016, 17 (5), 1213.
114. Niu, H.; Gao, S.; Yue, W.; Li, Y.; Zhou, W.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small. 2020, 16 (4), 1904774.
115. Yin, X.-Y.; Zhang, Y.; Cai, X.; Guo, Q.; Yang, J.; Wang, Z. L. 3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons. 2019, 6 (4), 767.