| 研究生: |
謝季翰 Hsieh, Chi-Han |
|---|---|
| 論文名稱: |
探討Alpk2/3在斑馬魚心臟發育的角色 The role of Alpk2/3 in heart development during zebrafish early embryonic development |
| 指導教授: |
盧福翊
Lu, Fu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 斑馬魚 、心臟發育 、Morpholino 、CRISPR/Cas9 |
| 外文關鍵詞: | zebrafish, heart development, Morpholino, CRISPR/Cas9 |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心臟心肌疾病之致病機轉複雜,多種基因參與在其中,利用心臟衰竭模式小鼠透過基因定位的方式定與生物資訊軟體與表現模式資料庫比對,篩選出位於Hrtfm4基因座上,在心臟骨骼肌高度表現且與心臟衰竭高度相關的Alpk2基因。Alpk2基因屬於alpha kinase家族一員,當中還有Alpk1和Alpk3基因,胺基酸序列比對發現Alpk2與Alpk3(45%)相對於Alpk1(21%)有相對較高的同源性,而在先前的研究已知alpk3基因缺陷會導致小鼠心臟病變,暗示Alpk2也許與Alpk3對於心臟功能擁有類似功能或調控機制。基於初步的預測結果與理由,利用斑馬魚此種擁有近似於哺乳類閉鎖循環系統之脊椎生物研究Alpk2和Alpk3在心臟之功能。使用原位雜交染色確認alpk2/3基因其表現位置皆表現在心臟與骨骼肌。利用morpholino技術對alpk2/3做基因抑制,觀察到斑馬魚胚胎心臟發育出現左右不對稱以及心包膜水腫之缺陷情況,其調控器官左右不對稱的nodal相關基因仍然保持正常。為確認專一性,進一步利用CRISPR/Cas9技術嘗試建立基因剔除魚。雖然alpk2與alpk3具有相似表現模式,但是二者並不會相互地調控。本實驗結果推測alpk2與alpk3在心臟發育過程中,有著相似的功能,具有調控心臟管腔發育方向的功能,且二者無上下游調控之關係。
Heart failure is the most common outcome of heart diseases and the pathogenesis of heart failure is complex and polygenic. There are many genes participate in the process of heart failure pathogenesis. By using quantitative trait locus mapping to identify several loci (Hrtfm) in a heart failure mouse model that influence heart function and overall survival rate. In Hrtfm4, Alpk2 (alpha kinase 2) is a strong candidate gene, that is highly expressed in heart and skeletal muscles, suggests that Alpk2 might play an important role in heart function. Alpk2 is a gene that belong to Alpk family. There are three major members in the family, Alpk1, Alpk2 and Alpk3. Among all three Alpk proteins, Alpk2 shares a higher amino acid homology with Alpk3 (45%) than that with Alpk1 (21%). Alpk3 deficient mice has been reported to feature with cardiomyopathy. Based on these predictions and reasons, by using zebrafish embryo as the experimental animal model, took advantage for its closed circulation system to study the role of alpk2 and alpk3 on heart function. Both of alpk2 and alpk3 expressed on the skeletal muscle and heart in zebrafish embryo. Knockdown of alpk2 and alpk3 by using morpholino caused the pericardial edema and heart looping asymmetry. In order to clarify the mechanism of how alpk2 or alpk3 control the orientation of heart looping, the expression of southpaw, which is the left–right asymmetric master regulation signals during zebrafish early embryonic development was tested. The expression of southpaw is normal after the knockdown of alpk2 or alpk3. To confirm the specificity of the loss-of-fuction study that based on morpholino, by using CRISPR/Cas9 mutagenesis technique to generate alpk2 and alpk3 mutant zebrafish. Although alpk2 and alpk3 share the same expression pattern, Alpk2 and Alpk3 do not regulae each other in the process of heart early development. In this study, the expression pattern of alpk2 and alpk3 has been confirmed. The loss-of-function based on morpholino suggest that alpk2 and alpk3 will regulale the direction of heart looping, but alpk2 and alpk3 do not have the epistasis relationship to each other.
Almdal, T., Scharling, H., Jensen, J. S., and Vestergaard, H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13000 men and women with 20 years of follow-up. Archives of Internal Medicine 164, 1422-1426, 2004.
Baker, K., Holtzman, N. G., and Burdine, R. D. Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proceedings of the National Academy of Sciences of the United States of America 105, 13924-13929, 2008.
Bakkers, J., Verhoeven, M. C., and Abdelilah-Seyfried, S. Shaping the zebrafish heart: From left-right axis specification to epithelial tissue morphogenesis. Developmental Biology 330, 213-220, 2009.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712, 2007.
Bedford, D. E., Papp, C., and Parkinson, J. Atrial septal defect. British Heart Journal 3, 37, 1941.
Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., and Ekker, S. C. A primer for morpholino use in zebrafish. Zebrafish 6, 69-77, 2009.
Bisgrove, B. W., Essner, J. J., and Yost, H. J. Regulation of midline development by antagonism of lefty and nodal signaling. Development 126, 3253-3262, 1999.
Broman, K. W., Wu, H., Sen, Ś., and Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889-890, 2003.
Brown, D. R., Samsa, L. A., Qian, L., and Liu, J. Advances in the study of heart development and disease using Zebrafish. Journal of Cardiovascular Development and Disease 3, 13, 2016.
Chauvet, C., Crespo, K., Ménard, A., Wu, Y., Xiao, C., Blain, M., Roy, J., and Deng, A. Y. α-Kinase 2 is a novel candidate gene for inherited hypertension in Dahl rats. Journal of Hypertension 29, 1320-1326, 2011.
Chen, J. N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., Van Eeden, F., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., and Heisenberg, C. P. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293-302, 1996.
Chen, J. N., Van Eeden, F., Warren, K. S., Chin, A., Nusslein-Volhard, C., Haffter, P., and Fishman, M. C. Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373-4382, 1997.
Chen, Y. H., Pai, C. W., Huang, S. W., Chang, S. N., Lin, L. Y., Chiang, F. T., Lin, J. L., Hwang, J. J., and Tsai, C. T. Inactivation of Myosin binding protein C homolog in zebrafish as a model for human cardiac hypertrophy and diastolic dysfunction. Journal of the American Heart Association 2, e000231, 2013.
Chen, Y., and Schier, A. F. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411, 607, 2001.
Chocron, S., Verhoeven, M. C., Rentzsch, F., Hammerschmidt, M., and Bakkers, J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Developmental Biology 305, 577-588, 2007.
Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517, 2003.
Collard, B., Jahufer, M., Brouwer, J., and Pang, E. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169-196, 2005.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., and Marraffini, L. A. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, 2013.
Corey, D. P. New TRP channels in hearing and mechanosensation. Neuron 39, 585-588, 2003.
Diggle, T. A., Seehra, C. K., Hase, S., and Redpath, N. T. Analysis of the domain structure of elongation factor-2 kinase by mutagenesis. Federation of European Biochemical Societies Letters 457, 189-192, 1999.
Dougan, S. T., Warga, R. M., Kane, D. A., Schier, A. F., and Talbot, W. S. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130, 1837-1851, 2003.
Draper, B. W., Morcos, P. A., and Kimmel, C. B. Inhibition of zebrafish fgf8 pre‐mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown. Genesis 30, 154-156, 2001.
Drennan, D., and Ryazanov, A. G. Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Progress in Biophysics and Molecular Biology 85, 1-32, 2004.
Driever, W., Solnica-Krezel, L., Schier, A., Neuhauss, S., Malicki, J., Stemple, D., Stainier, D., Zwartkruis, F., Abdelilah, S., and Rangini, Z. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46, 1996.
Ferguson, D. P., Dangott, L. J., and Lightfoot, J. T. Lessons learned from vivo-morpholinos: How to avoid vivo-morpholino toxicity. Biotechniques 56, 251, 2014.
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M., and Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32, 279-284, 2014.
Futey, L. M., Medley, Q. G., Côté, G. P., and Egelhoff, T. T. Structural analysis of myosin heavy chain kinase a from dictyostelium evidence for a highly divergent protein kinase domain, an amino-terminal coiled-coil domain, and a domain homologous to the β-subunit of heterotrimeric g proteins. Journal of Biological Chemistry 270, 523-529, 1995.
Gaj, T., Gersbach, C. A., and Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405, 2013.
Hashimoto, H., Rebagliati, M., Ahmad, N., Muraoka, O., Kurokawa, T., Hibi, M., and Suzuki, T. The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131, 1741-1753, 2004.
Hassel, D., Dahme, T., Erdmann, J., Meder, B., Huge, A., Stoll, M., Just, S., Hess, A., Ehlermann, P., and Weichenhan, D. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nature Medicine 15, 1281-1288, 2009.
Heasman, J. Morpholino oligos: making sense of antisense? Developmental Biology 243, 209-214, 2002.
Hein, S., Kostin, S., Heling, A., Maeno, Y., and Schaper, J. The role of the cytoskeleton in heart failure. Cardiovascular Research 45, 273-278, 2000.
Heine, M., Cramm-Behrens, C. I., Ansari, A., Chu, H. P., Ryazanov, A. G., Naim, H. Y., and Jacob, R. α-Kinase 1, a new component in apical protein transport. Journal of Biological Chemistry 280, 25637-25643, 2005.
Hogan, B. M., Herpers, R., Witte, M., Heloterä, H., Alitalo, K., Duckers, H. J., and Schulte-Merker, S. Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 136, 4001-4009, 2009.
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., and Schmid, B. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982-4987, 2013.
Hsia, N., and Zon, L. I. Transcriptional regulation of hematopoietic stem cell development in zebrafish. Experimental Hematology 33, 1007-1014, 2005.
Hu, N., Yost, H. J., and Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. The Anatomical Record 264, 1-12, 2001.
Hu, N., Sedmera, D., Yost, H. J., and Clark, E. B. Structure and function of the developing zebrafish heart. The Anatomical Record 260, 148-157, 2000.
Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., and Tsai, H. J. Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental Dynamics 228, 30-40, 2003.
Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. J., and Joung, J. K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31, 227-229, 2013.
Inoue, H., Nojima, H., and Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28, 1990.
Itasaki, N., Nakamura, H., Sumida, H., and Yasuda, M. Actin bundles on the right side in the caudal part of the heart tube play a role in dextro-looping in the embryonic chick heart. Anatomy and Embryology 183, 29-39, 1991.
Jackson, S. P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687-696, 2002.
Jansen, R., van Embden, J. D., Gaastra, W., and Schouls, L. M. Identification of a novel family of sequence repeats among prokaryotes. Omics: a Journal of Integrative Biology 6, 23-33, 2002.
Kamei, M., Isogai, S., and Weinstein, B. M. Imaging blood vessels in the zebrafish. Methods in Cell Biology 76, 51-74, 2004.
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310, 1995.
Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera, M. D. C., and Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology 32, 267-273, 2014.
Kok, F. O., Shin, M., Ni, C. W., Gupta, A., Grosse, A. S., van Impel, A., Kirchmaier, B. C., Peterson-Maduro, J., Kourkoulis, G., and Male, I. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell 32, 97-108, 2015.
Kramer-Zucker, A. G., Olale, F., Haycraft, C. J., Yoder, B. K., Schier, A. F., and Drummond, I. A. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907-1921, 2005.
Lee, R., Stainier, D., Weinstein, B. M., and Fishman, M. C. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120, 3361-3366, 1994.
Li, J., Zhang, B., Bu, J., and Du, J. Intron-based genomic editing: a highly efficient method for generating knockin zebrafish. Oncotarget 6, 17891-17894, 2015.
Li, W., Teng, F., Li, T., and Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology 31, 684-686, 2013.
Lien, C. L., Wu, C. Z., Mercer, B., Webb, R., Richardson, J. A., and Olson, E. N. Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 126, 75-84, 1999.
Lieschke, G. J., and Currie, P. D. Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics 8, 353-367, 2007.
Liu, J., and Stainier, D. Y. Zebrafish in the study of early cardiac development. Circulation Research 110, 870-874, 2012.
Long, S., Ahmad, N., and Rebagliati, M. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130, 2303-2316, 2003.
Mann, D. L. Mechanisms and models in heart failure: a combinatorial approach. Circulation 100, 999-1008, 1999.
Maron, B. J., Towbin, J. A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A. J., Seidman, C. E., and Young, J. B. Contemporary definitions and classification of the cardiomyopathies. Circulation 113, 1807-1816, 2006.
Middelbeek, J., Clark, K., Venselaar, H., Huynen, M. A., and Van Leeuwen, F. N. The alpha-kinase family: an exceptional branch on the protein kinase tree. Cellular and Molecular Life Sciences 67, 875-890, 2010.
Miles, C., and Wayne, M. Quantitative trait locus (QTL) analysis. Nature Education 1, 208, 2008.
Nasevicius, A., and Ekker, S. C. Effective targeted gene knockdown in zebrafish. Nature Genetics 26, 216-220, 2000.
Noel, E. S., Verhoeven, M., Lagendijk, A. K., Tessadori, F., Smith, K., Choorapoikayil, S., den Hertog, J., and Bakkers, J. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nature Communication 4, 2754, 2013.
Ober, E. A., Olofsson, B., Mäkinen, T., Jin, S. W., Shoji, W., Koh, G. Y., Alitalo, K., and Stainier, D. Y. Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. European Molecular Biology Organization Reports 5, 78-84, 2004.
Oka, T., Maillet, M., Watt, A. J., Schwartz, R. J., Aronow, B. J., Duncan, S. A., and Molkentin, J. D. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circulation Research 98, 837-845, 2006.
Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874-879, 1989.
Poss, K. D., Wilson, L. G., and Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188-2190, 2002.
Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., and Zhang, Y. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389, 2013.
Ramsdell, A. F. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Developmental Biology 288, 1-20, 2005.
Ramsey, I. S., Delling, M., and Clapham, D. E. An introduction to TRP channels. Annual Review of Physiology 68, 619-647, 2006.
Rath, D., Amlinger, L., Rath, A., and Lundgren, M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117, 119-128, 2015.
Rubin, S. A., Fishbein, M. C., Swan, H., and Rabines, A. Compensatory hypertrophy in the heart after myocardial infarction in the rat. Journal of the American College of Cardiology 1, 1435-1441, 1983.
Runnels, L. W., Yue, L., and Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043-1047, 2001.
Ryazanov, A. G., Pavur, K. S., and Dorovkov, M. V. Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Current Biology 9, R43-R45, 1999.
Ryazanov, A. G., Rudkin, B. B., and Spirin, A. S. Regulation of protein synthesis at the elongation stage new insights into the control of gene expression in eukaryotes. Federation of European Biochemical Societies Letters 285, 170-175, 1991.
Ryazanov, A. G., Ward, M. D., Mendola, C. E., Pavur, K. S., Dorovkov, M. V., Wiedmann, M., Erdjument-Bromage, H., Tempst, P., Parmer, T. G., and Prostko, C. R. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proceedings of the National Academy of Sciences of the United States of America 94, 4884-4889, 1997.
Saiki, R., Scharf, S., Faloona, F., Mullis, K., Hoorn, G., and Arnheim, N. Polymerase chain reaction. Science 230, 1350-1354, 1985.
Scheeff, E. D., and Bourne, P. E. Structural evolution of the protein kinase-like superfamily. PLoS Computational Biology 1, e49, 2005.
Schott, J. J., Benson, D. W., Basson, C. T., Pease, W., Silberbach, G. M., Moak, J. P., Maron, B. J., Seidman, C. E., and Seidman, J. G. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108-111, 1998.
Schottenfeld, J., Sullivan-Brown, J., and Burdine, R. D. Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw. Development 134, 1605-1615, 2007.
Serluca, F. C. Development of the proepicardial organ in the zebrafish. Developmental Biology 315, 18-27, 2008.
Soonpaa, M. H., Koh, G. Y., Klug, M. G., and Field, L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98-102, 1994.
Stainier, D., Lee, R. K., and Fishman, M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31-40, 1993.
Summerton, J., and Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense and Nucleic Acid Drug Development 7, 187-195, 1997.
Taylor, R. G., Geesink, G., Thompson, V., Koohmaraie, M., and Goll, D. Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science 73, 1351-1367, 1995.
Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.P., and Thisse, C. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods in Cell Biology 77, 505-519, 2004.
Thisse, C., and Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols 3, 59-69, 2008.
Tu, C. T., Yang, T. C., and Tsai, H. J. Nkx2.7 and Nkx2.5 function redundantly and are required for cardiac morphogenesis of zebrafish embryos. PloS One 4, e4249, 2009.
Van Sligtenhorst, I., Ding, Z. M., Shi, Z. Z., Read, R. W., Hansen, G., and Vogel, P. Cardiomyopathy in alpha-kinase 3 (ALPK3) deficient mice. Veterinary Pathology 49, 131-141, 2012.
Wang, A. M., Doyle, M. V., and Mark, D. F. Quantitation of mRNA by the polymerase chain reaction. Proceedings of the National Academy of Sciences of the United States of America 86, 9717-9721, 1989.
Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., and Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918, 2013.
Wessels, A., and Sedmera, D. Developmental anatomy of the heart: a tale of mice and man. Physiological Genomics 15, 165-176, 2003.
Westerfield, M. General Method for Zebrafish Care. The zebrafish book. A guide for the laboratory use of zebrafish (Daniao rerio). 4th ed. University of Oregon Press, Eugene, 13-27, 2000.
Wiedenheft, B., Sternberg, S. H., and Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338, 2012.
Wienholds, E., Van Eeden, F., Kosters, M., Mudde, J., Plasterk, R. H., and Cuppen, E. Efficient target-selected mutagenesis in zebrafish. Genome Research 13, 2700-2707, 2003.
Whittaker, J., Thompson, R., and Visscher, P. On the mapping of QTL by regression of phenotype on marker-type. Heredity 77, 23-32, 1996.
Wong, H., Anderson, W. D., Cheng, T., and Riabowol, K. T. Monitoring mRNA Expression by Polymerase Chain Reaction: The. Analytical Biochemistry 223, 251-258, 1994.
Yamaguchi, H., Matsushita, M., Nairn, A. C., and Kuriyan, J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Molecular Cell 7, 1047-1057, 2001.
Yelon, D. Cardiac patterning and morphogenesis in zebrafish. Developmental Dynamics 222, 552-563, 2001.
Zon, L. I., and Peterson, R. T. In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery 4, 35-44, 2005.