簡易檢索 / 詳目顯示

研究生: 亞卡恩
Trakarn Yimtrakarn
論文名稱: 低成本且堅固之鋅離子電池陰極與環保萃取木質素之能源相關應用
Low-cost Robust Zn-ion Battery Cathode and Eco-friendly Extraction of Lignin with Energy-related Applications
指導教授: 柯碧蓮
Watchareeya Kaveevivitchai
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 138
中文關鍵詞: 六氰基鐵酸錳鋅離子電池非水電解液木質素提取微波
外文關鍵詞: Manganese hexacyanoferrate, Zn-ion batteries, Non-aqueous electrolyte, Lignin extraction, Microwave
ORCID: 0000-0002-6889-1896
相關次數: 點閱:80下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Demands for energy and natural resources are rapidly increasing, which necessitates advancements in energy research to meet humanity's ever-growing needs. As a result, the development of innovative solutions for sustainable energy storage is of utmost importance. This abstract presents two interconnected studies focused on addressing key challenges in the field. The first study explores the use of a low-cost and robust cathode material for zinc-ion batteries (ZIBs), while the second study investigates an eco-friendly extraction of lignin for energy-related applications. The findings provide valuable insights into the development of inexpensive battery cathode materials and the alternative non-hazardous lignin extraction processes, facilitating the progress towards greener energy production and storage. Both projects aim to improve the efficiency and sustainability of how energy is produced and stored, supporting the development of a more sustainable future.
    The development of innovative solutions for sustainable energy storage has been proved crucial in response to the exponentially growing energy demand. ZIBs have emerged as a promising technology due to their safety, low toxicity, inexpensiveness, and ability to transfer two electrons. However, the electrochemical performance of most cathode materials used in non-aqueous ZIBs remains unsatisfactory. To address this challenge, an economical Prussian blue analogue called sodium manganese hexacyanoferrate (NMHCF) was explored as a cathode material due to its facile synthesis, large open framework, and chemical and electrochemical tunability. NMHCF was found to exhibit high framework flexibility and structural reversibility upon divalent guest intercalation. The crystallographic vacancies and coordinated water molecules were believed to assist the cation diffusion during cell cycling. Ex-situ characterization techniques, including energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS), were used to provide a deeper understanding of NMHCF's properties. The findings guide the development of inexpensive cathode materials suitable for large-scale energy storage systems.
    Furthermore, lignin, one of the most abundant natural aromatic polymers found in plant biomass, holds promise for energy-related applications, particularly as a precursor for high-value liquid fuel synthesized from lignin-derived phenolic compounds. The study was conducted to extract lignin using a microwave-assisted solvent extraction method. Rubberwood sawdust (Hevea brasiliensis) was subjected to extraction with either ethanol or isopropanol as an organic-based solvent. Microwave power levels and extraction times were varied to optimize the extraction process. The extracted lignin was characterized using several techniques such as Klason lignin analysis, Fourier transform infrared spectroscopy (FT-IR), two-dimensional heteronuclear single-quantum coherence nuclear magnetic resonance spectroscopy (2D HSQC NMR), ultraviolet-visible spectroscopy (UV-vis), and bomb calorimetry. The results demonstrated that longer extraction times and higher microwave power levels led to increased lignin yield. Additionally, ethanol exhibited a higher extraction yield compared to isopropanol. These insights enhance our understanding of lignin extraction processes and contribute to the utilization of lignin in energy-related applications.

    Abstract I Acknowledgments IV Table of Contents VI List of Figures X List of Tables XIV Chapter 1 Low-cost Robust Zn-ion Battery Cathode 1 1.1 Introduction and Research Motivation 1 1.1.1 Introduction 1 1.1.2 Motivation and Purpose 3 1.2 General Background and Literature Review 5 1.2.1 Battery Fundamentals 5 1.2.2 Aqueous and Non-aqueous Zn-ion Batteries 8 1.2.3 Mechanism in Zn-ion Batteries 14 1.2.4 PBA Cathode Materials for Zn-ion Batteries 22 1.3 Experimental Section 39 1.3.1 Materials 39 1.3.2 Synthesis of Sodium Manganese Hexacyanoferrate (NMHCF) 40 1.3.3 Preparation of Zn/ NMHCF cells 41 1.3.4 Materials Characterization 42 1.4 Results and Discussion 46 1.4.1 Materials Characterization 46 1.4.2 Material Morphology 52 1.4.3 Electrochemical Investigation 54 1.4.4 Mechanistic Studies 56 1.5 Conclusion 65 Chapter 2 Eco-friendly Extraction of Lignin 66 2.1 Introduction and Research Motivation 66 2.1.1 Introduction 66 2.1.2 Research Motivation 69 2.2 General Background and Literature Review 71 2.2.1 Lignocellulose Biomass 71 2.2.2 Separation Methods of Lignin from Wood 75 2.2.3 Techniques for Characterizing Lignin 80 2.2.4 Effect of Microwave on Biomass 83 2.2.5 Microwave Heating of Organic Solvents 84 2.2.6 Softwood and Hardwood 86 2.2.7 Rubber Tree 88 2.2.8 Literature Review 88 2.3 Methodology 91 2.3.1 Materials 91 2.3.2 Solvent Extraction with Microwave-Assisted Method 92 2.3.3 Klason Lignin Analytical Method 93 2.3.4 Ultraviolet-Visible Spectrophotometry (UV-vis) Analytical Method 94 2.3.5 Characterization Method Using Fourier Transform Infrared Spectroscopy (FT-IR) 95 2.3.6 Heteronuclear Single Quantum Coherence Spectroscopy (2D HSQC NMR) Characterization Method 96 2.3.7 Bomb Calorimeter Characterization Method 96 2.4 Results and Discussion 97 2.4.1 Microwave-Assisted Extraction of Lignin 97 2.4.2 Analysis Using Fourier Transform Infrared Spectroscopy (FT-IR) 100 2.4.3 Analysis Using Heteronuclear Single Quantum Coherence Spectroscopy (2D HSQC NMR) 104 2.4.4 Ultraviolet-Visible Spectrophotometry (UV-vis) Analysis 106 2.4.5 Higher Heating Value (HHV) Characterization 107 2.5 Conclusion 109 References 111

    (1) Pan, C.; Nuzzo, R. G.; Gewirth, A. A. Znalxco2–Xo4 Spinels as Cathode Materials for Non-aqueous Zn Batteries with an Open Circuit Voltage of ≤2 V. Chem. Mater. 2017, 29, 9351–9359.
    (2) Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards High-voltage Aqueous Metal-ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5, 1400930.
    (3) Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Morphology-dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-ion Battery. Sci. Rep. 2015, 5, 18263.
    (4) Chae, M. S.; Heo, J. W.; Kwak, H. H.; Lee, H.; Hong, S.-T. Organic Electrolyte-based Rechargeable Zinc-ion Batteries Using Potassium Nickel Hexacyanoferrate as a Cathode Material. J. Power Sources 2017, 337, 204–211.
    (5) Kundu, D.; Vajargah, S. H.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous Vs. Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface. Energy Environ. Sci. 2018, 11, 881–892.
    (6) Lv, Y. Q.; Xiao, Y.; Ma, L. T.; Zhi, C. Y.; Chen, S. M. Recent Advances in Electrolytes for "Beyond Aqueous" Zinc-ion Batteries. Adv. Mater. 2022, 34, 2106409.
    (7) Pan, C.; Zhang, R.; Nuzzo, R. G.; Gewirth, A. A. Znnixmnxco2–2xo4 Spinel as a High-voltage and High-capacity Cathode Material for Nonaqueous Zn-ion Batteries. Adv. Energy Mater. 2018, 8, 1800589.
    (8) Senguttuvan, P.; Han, S. D.; Kim, S.; Lipson, A. L.; Tepavcevic, S.; Fister, T. T.; Bloom, I. D.; Burrell, A. K.; Johnson, C. S. A High Power Rechargeable Nonaqueous Multivalent Zn/V2o5 Battery. Advanced Energy Materials 2016, 6, 1600826.
    (9) Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K. High Cycling Stability of Zinc-anode/Conducting Polymer Rechargeable Battery with Non-aqueous Electrolyte. J. Power Sources 2014, 248, 1099–1104.
    (10) Li, Y. X.; Zhao, J. X.; Hu, Q.; Hao, T. W.; Cao, H.; Huang, X. M.; Liu, Y.; Zhang, Y. Y.; Lin, D. M.; Tang, Y. X.; Cai, Y. Q. Prussian Blue Analogs Cathodes for Aqueous Zinc Ion Batteries. Mater. Today Energy 2022, 29, 101095.
    (11) Shen, Z.; Sun, Y.; Xie, J.; Liu, S.; Zhuang, D.; Zhang, G.; Zheng, W.; Cao, G.; Zhao, X. Manganese Hexacyanoferrate/Graphene Cathodes for Sodium-ion Batteries with Superior Rate Capability and Ultralong Cycle Life. Inorg. Chem. Front. 2018, 5, 2914–2920.
    (12) Lee, H.-W.; Wang, R. Y.; Pasta, M.; Woo Lee, S.; Liu, N.; Cui, Y. Manganese Hexacyanomanganate Open Framework as a High-capacity Positive Electrode Material for Sodium-ion Batteries. Nat. Commun. 2014, 5, 5280.
    (13) Liu, C.; Neale, Z. G.; Cao, G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19, 109–123.
    (14) Trócoli, R.; La Mantia, F. An Aqueous Zinc-ion Battery Based on Copper Hexacyanoferrate. ChemSusChem 2015, 8, 481–485.
    (15) Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Crystal Water for High Performance Layered Manganese Oxide Cathodes in Aqueous Rechargeable Zinc Batteries. Energy Environ. Sci. 2019, 12, 1999–2009.
    (16) He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered Vs2 Nanosheet-based Aqueous Zn Ion Battery Cathode. Adv. Energy Mater. 2017, 7, 1601920.
    (17) Naveed, A.; Yang, H.; Shao, Y.; Yang, J.; Yanna, N.; Liu, J.; Shi, S.; Zhang, L.; Ye, A.; He, B.; Wang, J. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-cycle-life Batteries. Adv. Mater. 2019, 31, 1900668.
    (18) Huang, M.; Meng, J.; Huang, Z.; Wang, X.; Mai, L. Ultrafast Cation Insertion-Selected Zinc Hexacyanoferrate for 1.9 v K–Zn Hybrid Aqueous Batteries. J. Mater. Chem. A 2020, 8, 6631–6637.
    (19) Xu, C.-X.; Jiang, J.-J. Electrolytes Speed up Development of Zinc Batteries. Rare Metals 2021, 40, 749–751.
    (20) Zhu, R.; Xiong, Z.; Yang, H.; Huang, T.; Jeong, S.; Kowalski, D.; Kitano, S.; Aoki, Y.; Habazaki, H.; Zhu, C. A Low-cost and Non-corrosive Electropolishing Strategy for Long-life Zinc Metal Anode in Rechargeable Aqueous Battery. Energy Storage Mater. 2022, 46, 223–232.
    (21) Ding, J.; Du, Z.; Gu, L.; Li, B.; Wang, L.; Wang, S.; Gong, Y.; Yang, S. Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide. Adv. Mater. 2018, 30, 1800762.
    (22) Hu, P.; Yan, M.; Zhu, T.; Wang, X.; Wei, X.; Li, J.; Zhou, L.; Li, Z.; Chen, L.; Mai, L. Zn/V2o5 Aqueous Hybrid-ion Battery with High Voltage Platform and Long Cycle Life. ACS Appl. Mater. Interfaces 2017, 9, 42717–42722.
    (23) Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable Aqueous Zinc-Manganese Dioxide Batteries with High Energy and Power Densities. Nat. Commun. 2017, 8, 405.
    (24) Lee, B.; Yoon, C. S.; Lee, H. R.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Electrochemically-induced Reversible Transition from the Tunneled to Layered Polymorphs of Manganese Dioxide. Sci. Rep. 2014, 4, 6066.
    (25) Wei, C.; Xu, C.; Li, B.; Du, H.; Kang, F. Preparation and Characterization of Manganese Dioxides with Nano-sized Tunnel Structures for Zinc Ion Storage. J. Phys. Chem. Solids 2012, 73, 1487–1491.
    (26) Li, G.; Yang, Z.; Jiang, Y.; Jin, C.; Huang, W.; Ding, X.; Huang, Y. Towards Polyvalent Ion Batteries: A Zinc-ion Battery Based on Nasicon Structured Na3v2(Po4)3. Nano Energy 2016, 25, 211–217.
    (27) Li, G.; Yang, Z.; Jiang, Y.; Zhang, W.; Huang, Y. Hybrid Aqueous Battery Based on Na3v2(Po4)3/C Cathode and Zinc Anode for Potential Large-scale Energy Storage. J. Power Sources 2016, 308, 52–57.
    (28) Luu, N. T. H.; Ivanov, A. S.; Chen, T.-H.; Popovs, I.; Lee, J.-C.; Kaveevivitchai, W. Proton-enabled Biomimetic Stabilization of Small-molecule Organic Cathode in Aqueous Zinc-ion Batteries. J. Mater. Chem. A 2022, 10, 12371–12377.
    (29) Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.; Hu, J.; Ma, H.; Chen, J. High-capacity Aqueous Zinc Batteries Using Sustainable Quinone Electrodes. Sci. Adv. 2018, 4, 1761.
    (30) Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent Advances in Aqueous Zinc-ion Batteries. ACS Energy Lett. 2018, 3, 2480–2501.
    (31) Ma, L.; Schroeder, M. A.; Borodin, O.; Pollard, T. P.; Ding, M. S.; Wang, C.; Xu, K. Realizing High Zinc Reversibility in Rechargeable Batteries. Nat. Energy 2020, 5, 743–749.
    (32) Guan, Q.; Li, Y.; Bi, X.; Yang, J.; Zhou, J.; Li, X.; Cheng, J.; Wang, Z.; Wang, B.; Lu, J. Dendrite-free Flexible Fiber-shaped Zn Battery with Long Cycle Life in Water and Air. Adv. Energy Mater. 2019, 9, 1901434.
    (33) Hao, J.; Yuan, L.; Ye, C.; Chao, D.; Davey, K.; Guo, Z.; Qiao, S.-Z. Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-cost Antisolvents. Angew. Chem. Int. Ed. 2021, 60, 7366–7375.
    (34) Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian Blue/Zinc Secondary Battery with a Bio-ionic Liquid-Water Mixture as Electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158–12164.
    (35) Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J.-X.; Fang, C.; Ji, X. A Zncl2 Water-in-Salt Electrolyte for a Reversible Zn Metal Anode. Chem. Commun. 2018, 54, 14097–14099.
    (36) Wei, T.; Ren, Y.; Li, Z.; Zhang, X.; Ji, D.; Hu, L. Bonding Interaction Regulation in Hydrogel Electrolyte Enable Dendrite-free Aqueous Zinc-ion Batteries from −20 to 60 °C. J. Chem. Eng. 2022, 434, 134646.
    (37) Wu, T.; Zhou, W.; Quan, Y.; Chen, M.; Tian, Q.; Han, X.; Xu, J.; Chen, J. Facile and Green Synthesis of Nanocellulose with the Assistance of Ultraviolet Light Irradiation for High-performance Quasi-solid-state Zinc-ion Batteries. J. Colloid Interface Sci. 2022, 628, 1–9.
    (38) Lipson, A. L.; Han, S.-D.; Kim, S.; Pan, B.; Sa, N.; Liao, C.; Fister, T. T.; Burrell, A. K.; Vaughey, J. T.; Ingram, B. J. Nickel Hexacyanoferrate, a Versatile Intercalation Host for Divalent Ions from Nonaqueous Electrolytes. J. Power Sources 2016, 325, 646–652.
    (39) Dong, Y.; Di, S.; Zhang, F.; Bian, X.; Wang, Y.; Xu, J.; Wang, L.; Cheng, F.; Zhang, N. Nonaqueous Electrolyte with Dual-vations for High-voltage and Long-life Zinc Batteries. J. Mater. Chem. A 2020, 8, 3252–3261.
    (40) Yaghoobnejad Asl, H.; Sharma, S.; Manthiram, A. The Critical Effect of Water Content in the Electrolyte on the Reversible Electrochemical Performance of Zn–Vpo4f Cells. J. Mater. Chem. A 2020, 8, 8262–8267.
    (41) Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C. Advanced Rechargeable Zinc-Based Batteries: Recent Progress and Future Perspectives. Nano Energy 2019, 62, 550–587.
    (42) Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically Induced Structural Transformation in a Γ-Mno2 Cathode of a High Capacity Zinc-ion Battery System. Chem. Mater. 2015, 27, 3609–3620.
    (43) Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions. Nat. Energy 2016, 1, 16039.
    (44) Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. Zn/Mno2 Battery Chemistry with H+ and Zn2+ Coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.
    (45) Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. Rechargeable Hybrid Aqueous Batteries. J. Power Sources 2012, 216, 222–226.
    (46) Zhang, N.; Dong, Y.; Wang, Y.; Wang, Y.; Li, J.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F. Ultrafast Rechargeable Zinc Battery Based on High-voltage Graphite Cathode and Stable Nonaqueous Electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 32978–32986.
    (47) Kasiri, G.; Trocoli, R.; Hashemi, A. B.; La Mantia, F. An Electrochemical Investigation of the Aging of Copper Hexacyanoferrate During the Operation in Zinc-ion Batteries. Electrochim. Acta 2016, 222, 74–83.
    (48) Renman, V.; Ojwang, D. O.; Valvo, M.; Gómez, C. P.; Gustafsson, T.; Svensson, G. Structural-electrochemical Relations in the Aqueous Copper Hexacyanoferrate-Zinc System Examined by Synchrotron X-ray Diffraction. J. Power Sources 2017, 369, 146–153.
    (49) Li, Q.; Ma, K.; Yang, G.; Wang, C. High-voltage Non-aqueous Zn/K1.6mn1.2fe(Cn)6 Batteries with Zero Capacity Loss in Extremely Long Working Duration. Energy Storage Mater. 2020, 29, 246–253.
    (50) Li, Q.; Ma, K.; Hong, C.; Yang, Z.; Qi, C. Z.; Yang, G.; Wang, C. High-voltage K/Zn Dual-ion Battery with 100,000-Cycles Life Using Zero-strain Znhcf Cathode. Energy Storage Mater. 2021, 42, 715–722.
    (51) Li, Z.; Liu, T.; Meng, R.; Gao, L.; Zou, Y.; Peng, P.; Shao, Y.; Liang, X. Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries. EEM 2021, 4, 111–116.
    (52) Naveed, A.; Chen, J.; Raza, B.; Liu, Y.; Wang, J. Rechargeable Hybrid Organic Zn Battery (Rehoznb) with Non-flammable Electrolyte. J. Electroanal. Chem. 2022, 904, 115949.
    (53) Pan, C.; Nuzzo, R. G.; Gewirth, A. A. Znalxco2–Xo4 Spinels as Cathode Materials for Non-aqueous Zn Batteries with an Open Circuit Voltage of ≤2 V. Chem Mater 2017, 29, 93519358.
    (54) Pan, C.; Zhang, R.; Nuzzo, R. G.; Gewirth, A. A. Znnixmnxco2–2xo4 Spinel as a High-voltage and High-capacity Cathode Material for Nonaqueous Zn-ion Batteries. Adv Energy Mater 2018, 8, 1800589.
    (55) Kaveevivitchai, W.; Manthiram, A. High-capacity Zinc-ion Storage in an Open-Tunnel Oxide for Aqueous and Nonaqueous Zn-ion Batteries. Journal of Materials Chemistry A 2016, 4, 1873718741.
    (56) Park, M. J.; Yaghoobnejad Asl, H.; Therese, S.; Manthiram, A. Structural Impact of Zn-Insertion into Monoclinic V2(Po4)3: Implications for Zn-ion Batteries. Journal of Materials Chemistry A 2019, 7, 71597167.
    (57) Li, Q.; Ma, K. X.; Hong, C.; Yang, G. Z.; Wang, C. X. Realizing Excellent Cycle Stability of Zn/Na3v2(Po4)3 Batteries by Suppressing Dissolution and Structural Degradation in Non-aqueous Na/Zn Dual-salt Electrolytes. SCMs 2021, 64, 1386–1395.
    (58) Wu, S.-C.; Tsa, M.-C.; Liao, H.-J.; Su, T.-Y.; Tang, S.-Y.; Chen, C.-W.; Lo, H.-A.; Yang, T.-Y.; Wang, K.; Ai, Y.; Chen, Y.-Z.; Lee, L.; Lee, J.-F.; Lin, C.-J.; Hwang, B. J.; Chueh, Y.-L. Intercalation of Zinc Monochloride Cations by Deep Eutectic Solvents for High-performance Rechargeable Non-aqueous Zinc Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 7814–7825.
    (59) Zhou, L.-F.; Gao, X.-W.; Du, T.; Gong, H.; Liu, L.-Y.; Luo, W.-B. New Phosphate Zn2fe(Po4)2 Cathode Material for Nonaqueous Zinc Ion Batteries with Long Life Span. ACS Appl. Mater. Interfaces 2022, 14, 8888–8895.
    (60) Zhou, L.-F.; Gao, X.-W.; Du, T.; Gong, H.; Liu, L.-Y.; Luo, W.-B. A New Phosphate Member: Znmn2(Po4)2 as an Advanced Cathode Material for Aqueous and Nonaqueous Zinc Ion Batteries. J. Alloys Compd 2022, 905, 163939.
    (61) Bhatia, A.; Xu, J.; Pereira-Ramos, J.-P.; Rousse, G.; Baddour-Hadjean, R. Γ′-V2o5 Polymorph: A Genuine Zn Intercalation Material for Nonaqueous Rechargeable Batteries. Chem. Mater. 2022, 34, 1203–1212.
    (62) Han, S. D.; Kim, S.; Li, D. G.; Petkov, V.; Yoo, H. D.; Phillips, P. J.; Wang, H.; Kim, J. J.; More, K. L.; Key, B.; Klie, R. F.; Cabana, J.; Stamenkovic, V. R.; Fister, T. T.; Markovic, N. M.; Burrell, A. K.; Tepavcevic, S.; Vaughey, J. T. Mechanism of Zn Insertion into Nanostructured Delta-Mno2: A Nonaqueous Rechargeable Zn Metal Battery. Chem. Mater. 2017, 29, 4874–4884.
    (63) Kao-ian, W.; Nguyen, M. T.; Yonezawa, T.; Pornprasertsuk, R.; Qin, J.; Siwamogsatham, S.; Kheawhom, S. Highly Stable Rechargeable Zinc-ion Battery Using Dimethyl Sulfoxide Electrolyte. Mater. Today Energy 2021, 21, 100738.
    (64) Zhang, R.; Pan, C.; Nuzzo, R. G.; Gewirth, A. A. Cos2 as a Sulfur Redox-active Cathode Material for High-capacity Nonaqueous Zn Batteries. J. Phys. Chem. C 2019, 123, 8740–8745.
    (65) Yang, M.; Leon, N.; Pan, B.; Yu, Z.; Cheng, L.; Liao, C. Mechanistic Insights in Quinone-based Zinc Batteries with Nonaqueous Electrolytes. J. Electrochem. Soc. 2020, 167, 100536.
    (66) Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K. High Cycling Stability of Zinc-anode/Conducting Polymer Rechargeable Battery with Non-aqueous Electrolyte. J Power Sources 2014, 248, 10991104.
    (67) Tripathy, D.; Viswanatha, H. M.; Harish, M. N. K.; Sampath, S. Ion Storage Performance of a Polymer for Mono-, Di- and Tri-Valent Metal Ions in Non-aqueous Electrolytes. Chem. Commun. 2022, 58, 7821–7824.
    (68) Wang, N.; Dong, X.; Wang, B.; Guo, Z.; Wang, Z.; Wang, R.; Qiu, X.; Wang, Y. Zinc–Organic Battery with a Wide Operation-temperature Window from −70 to 150 °C. Angew. Chem. Int. Ed. 2020, 59, 14577–14583.
    (69) Wang, K.; Zhang, X.; Han, J.; Zhang, X.; Sun, X.; Li, C.; Liu, W.; Li, Q.; Ma, Y. High-performance Cable-type Flexible Rechargeable Zn Battery Based on Mno2@Cnt Fiber Microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573–24582.
    (70) Wang, M. Q.; Emre, A.; Tung, S.; Gerber, A.; Wang, D. D.; Huang, Y. D.; Cecen, V.; Kotov, N. A. Biomimetic Solid-state Zn2+ Electrolyte for Corrugated Structural Batteries. ACS Nano 2019, 13, 1107–1115.
    (71) Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A.; Zhi, C. Y. Initiating a Mild Aqueous Electrolyte Co3o4/Zn Battery with 2.2 V-high Voltage and 5000-cycle Lifespan by a Co(Iii) Rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.
    (72) Zhao, Y. W.; Ma, L. T.; Zhu, Y. B.; Qin, P.; Li, H. F.; Mo, F. N.; Wang, D. H.; Liang, G. J.; Yang, Q.; Liu, W. S.; Zhi, C. Y. Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) for High-performance Zinc-ion Batteries. ACS Nano 2019, 13, 7270–7280.
    (73) Lu, Y.; Zhu, T.; Xu, N.; Huang, K. A Semisolid Electrolyte for Flexible Zn-ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910.
    (74) Guo, F. J.; Gao, S.; Ji, C. C.; Mi, H. Y.; Li, H.; Zhang, W. T.; Pang, H. Finely Crafted Polyaniline Cathode for High-performance Flexible Quasi-solid-state Zn-ion Battery. Solid State Ion. 2021, 364, 115612.
    (75) Wang, J. Q.; Liu, J.; Hu, M. M.; Zeng, J.; Mu, Y. B.; Guo, Y.; Yu, J.; Ma, X.; Qiu, Y. J.; Huang, Y. A Flexible, Electrochromic, Rechargeable Zn//Ppy Battery with a Short Circuit Chromatic Warning Function. J. Mater. Chem. A 2018, 6, 11113–11118.
    (76) Chae, M. S.; Hong, S.-T. Prototype System of Rocking-chair Zn-ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode. Batteries 2019, 5, 3.
    (77) Renman, V.; Ojwang, D. O.; Valvo, M.; Gomez, C. P.; Gustafsson, T.; Svensson, G. Structural-electrochemical Relations in the Aqueous Copper Hexacyanoferrate-Zinc System Examined by Synchrotron X-ray Diffraction. Journal of Power Sources 2017, 369, 146153.
    (78) Trocoli, R.; Kasiri, G.; La Mantia, F. Phase Transformation of Copper Hexacyanoferrate (Kcufe(Cn)6) During Zinc Insertion: Effect of Co-ion Intercalation. J. Power Sources 2018, 400, 167–171.
    (79) Jia, Z. J.; Wang, B. G.; Wang, Y. Copper Hexacyanoferrate with a Well-defined Open Framework as a Positive Electrode for Aqueous Zinc Ion Batteries. Mater. Chem. Phys. 2015, 149, 601606.
    (80) Gupta, T.; Kim, A.; Phadke, S.; Biswas, S.; Luong, T.; Hertzberg, B. J.; Chamoun, M.; Evans-Lutterodt, K.; Steingart, D. A. Improving the Cycle Life of a High-rate, High-potential Aqueous Dual Ion Battery Using Hyper-dendritic Zinc and Copper Hexacyanoferrate. J. Power Sources 2016, 305, 22–29.
    (81) Kasiri, G.; Glenneberg, J.; Hashemi, A. B.; Kun, R.; La Mantia, F. Mixed Copper-Zinc Hexacyanoferrates as Cathode Materials for Aqueous Zinc-ion Batteries. Energy Storage Mater. 2019, 19, 360–369.
    (82) Zhang, Y. J.; Wang, Y.; Lu, L.; Sun, C. W.; Yu, D. Y. W. Vanadium Hexacyanoferrate with Two Redox Active Sites as Cathode Material for Aqueous Zn-ion Batteries. J. Power Sources 2021, 484, 229263.
    (83) Wang, F. X.; Li, Y. P.; Zhu, W. J.; Ge, X. L.; Cui, H. T.; Feng, K.; Liu, S. S.; Yang, X. Zn-ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering. ACS Appl. Mater. Interfaces 2021, 13, 34468–34476.
    (84) Wang, L. P.; Wang, P. F.; Wang, T. S.; Yin, Y. X.; Guo, Y. G.; Wang, C. R. Prussian Blue Nanocubes as Cathode Materials for Aqueous Na-Zn Hybrid Batteries. J. Power Sources 2017, 355, 18–22.
    (85) Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving High-voltage and High-capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Two-species Redox Reaction. Adv. Energy Mater. 2019, 9, 1902446.
    (86) Li, W. R.; Xu, C. W.; Zhang, X. K.; Xia, M. T.; Yang, Z. W.; Yan, H. H.; Yu, H. X.; Zhang, L. Y.; Shu, W. J.; Shu, J. Sodium Manganese Hexacyanoferrate as Zn Ion Host toward Aqueous Energy Storage. J. Electroanal. Chem. 2021, 881, 114968.
    (87) Deng, W. J.; Li, Z. G.; Ye, Y. K.; Zhou, Z. Q.; Li, Y. B.; Zhang, M.; Yuan, X. R.; Hu, J.; Zhao, W. G.; Huang, Z. Y.; Li, C.; Chen, H. B.; Zheng, J. X.; Li, R. Zn2+ Induced Phase Transformation of K2mnfe(Cn)6 Boosts Highly Stable Zinc-ion Storage. Adv. Energy Mater. 2021, 11, 2003639.
    (88) Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J. B. Removal of Interstitial H2o in Hexacyanometallates for a Superior Cathode of a Sodium-ion Battery. J. Am. Chem. Soc. 2015, 137, 2658-2664.
    (89) Toby, B. H.; Von Dreele, R. B. Gsas-Ii: The Genesis of a Modern Open-source All Purpose Crystallography Software Package. J. Appl. Cryst. 2013, 46, 544–549.
    (90) Wu, X.; Wu, C.; Wei, C.; Hu, L.; Qian, J.; Cao, Y.; Ai, X.; Wang, J.; Yang, H. Highly Crystallized Na2cofe(Cn)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399.
    (91) Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J. B. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-ion Battery. J. Am. Chem. Soc. 2015, 137, 2658–2664.
    (92) Hu, M.; Ishihara, S.; Ariga, K.; Imura, M.; Yamauchi, Y. Kinetically Controlled Crystallization for Synthesis of Monodispersed Coordination Polymer Nanocubes and Their Self-assembly to Periodic Arrangements. Chem. Eur. J. 2013, 19, 1882–1885.
    (93) Uemura, T.; Kitagawa, S. Prussian Blue Nanoparticles Protected by Poly(Vinylpyrrolidone). J. Am. Chem. Soc. 2003, 125, 7814–7815.
    (94) Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J. B. A Superior Low-cost Cathode for a Na-ion Battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967.
    (95) Kareis, C. M.; Lapidus, S. H.; Her, J.-H.; Stephens, P. W.; Miller, J. S. Non-Prussian Blue Structures and Magnetic Ordering of Na2mnii[Mnii(Cn)6] and Na2mnii[Mnii(Cn)6]·2h2o. J. Am. Chem. Soc. 2012, 134, 2246–2254.
    (96) Xue, L.; Li, Y.; Gao, H.; Zhou, W.; Lü, X.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost High-energy Potassium Cathode. J. Am. Chem. Soc. 2017, 139, 2164–2167.
    (97) Li, W.; Wang, K.; Cheng, S.; Jiang, K. An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous “Rocking-Chair” Zinc Ion Battery. Adv. Energy Mater. 2019, 9, 1900993.
    (98) Giri, A.; Goswami, N.; Pal, M.; Zar Myint, M. T.; Al-Harthi, S.; Singha, A.; Ghosh, B.; Dutta, J.; Pal, S. K. Rational Surface Modification of Mn3o4 Nanoparticles to Induce Multiple Photoluminescence and Room Temperature Ferromagnetism. J. Mater. Chem. C 2013, 1, 1885–1895.
    (99) Martínez-García, R.; Reguera, E.; Rodriguez, J.; Balmaseda, J.; Roque, J. Crystal Structures of Some Manganese(Ii) and Cadmium Hexacyanoferrates (Ii,Iii) and Structural Transformations Related to the Sorption of Cesium. Powder Diffr. 2004, 19, 255–264.
    (100) Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent Advances in Zn-ion Batteries. Adv. Funct. Mater. 2018, 28, 1802564.
    (101) Johra, F. T.; Lee, J. W.; Jung, W. G. Facile and Safe Graphene Preparation on Solution Based Platform. J Ind Eng Chem 2014, 20, 2883–2887.
    (102) Parthasarathi, N.; Duraiselvam, M. Improvement of High Temperature Wear Resistance of Aisi 316 Ass through Nicrbsicfe Plasma Spray Coating. JMMCE 2010, 09, 653–670.
    (103) Wang, R. Y.; Shyam, B.; Stone, K. H.; Weker, J. N.; Pasta, M.; Lee, H.-W.; Toney, M. F.; Cui, Y. Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials. Adv. Energy Mater. 2015, 5, 1401869.
    (104) Wang, L.; Song, J.; Qiao, R. M.; Wray, L. A.; Hossain, M. A.; Chuang, Y. D.; Yang, W. L.; Lu, Y. H.; Evans, D.; Lee, J. J.; Vail, S.; Zhao, X.; Nishijima, M.; Kakimoto, S.; Goodenough, J. B. Rhombohedral Prussian White as Cathode for Rechargeable Sodium-ion Batteries. J. Am. Chem. Soc. 2015, 137, 2548–2554.
    (105) Wilke, M.; Farges, F. o.; Petit, P.-E.; Brown, G. E., Jr.; Martin, F. o. Oxidation State and Coordination of Fe in Minerals: An Fe K-Xanes Spectroscopic Study. Am. Mineral. 2001, 86, 714–730.
    (106) Chalmin, E.; Farges, F.; Brown, G. E. A Pre-edge Analysis of Mn K-edge Xanes Spectra to Help Determine the Speciation of Manganese in Minerals and Glasses. Contrib. to Mineral. Petrol. 2009, 157, 111–126.
    (107) Laschuk, N. O.; Easton, E. B.; Zenkina, O. V. Reducing the Resistance for the Use of Electrochemical Impedance Spectroscopy Analysis in Materials Chemistry. Rsc Adv 2021, 11, 27925-27936.
    (108) Somerville, C.; Youngs, H.; Taylor, C.; Davis, S. C.; Long, S. P. Feedstocks for Lignocellulosic Biofuels. Science 2010, 329, 790-792.
    (109) Yang, D.; Qiu, X.; Zhou, M.; Lou, H. Properties of Sodium Lignosulfonate as Dispersant of Coal Water Slurry. Energy Convers. 2007, 48, 2433-2438.
    (110) Yang, D.; Qiu, X.; Pang, Y.; Zhou, M. Physicochemical Properties of Calcium Lignosulfonate with Different Molecular Weights as Dispersant in Aqueous Suspension. J Dispers Sci Technol 2008, 29, 1296-1303.
    (111) Milczarek, G. Kraft Lignin as Dispersing Agent for Carbon Nanotubes. J. Electroanal. Chem. 2010, 638, 178-181.
    (112) El-Khatib, E. M.; Ali, N. F.; Nassar, S. H.; El-Shemy, N. S. Functionalization of Natural Fibers Properties by Using Tio (2) Nanoparticles to Improve Its Antimicrobial Activity. Biointerface Res. Appl. Chem. 2022, 12, 4177-4191.
    (113) Zimniewska, M.; Kozłowski, R.; Batog, J. Nanolignin Modified Linen Fabric as a Multifunctional Product. Mol. Cryst 2008, 484, 409-416.
    (114) Chung, Y.-L.; Olsson, J. V.; Li, R. J.; Frank, C. W.; Waymouth, R. M.; Billington, S. L.; Sattely, E. S. A Renewable Lignin–Lactide Copolymer and Application in Biobased Composites. ACS Sustain. Chem. Eng. 2013, 1, 1231-1238.
    (115) Xue, B.-L.; Wen, J.-L.; Sun, R.-C. Lignin-Based Rigid Polyurethane Foam Reinforced with Pulp Fiber: Synthesis and Characterization. ACS Sustain. Chem. Eng. 2014, 2, 1474-1480.
    (116) Del Saz-Orozco, B.; Oliet, M.; Alonso, M. V.; Rojo, E.; Rodríguez, F. Formulation Optimization of Unreinforced and Lignin Nanoparticle-reinforced Phenolic Foams Using an Analysis of Variance Approach. Compos Sci Technol 2012, 72, 667-674.
    (117) Yang, C.; Liu, P. Water-dispersed Conductive Polypyrroles Doped with Lignosulfonate and the Weak Temperature Dependence of Electrical Conductivity. Ind. Eng. Chem. Res. 2009, 48, 9498-9503.
    (118) Wang, R.; Jiao, L.; Zhou, X.; Guo, Z.; Bian, H.; Dai, H. Highly Fluorescent Graphene Quantum Dots from Biorefinery Waste for Tri-channel Sensitive Detection of Fe3+ Ions. J. Hazard. Mater. 2021, 412, 125096.
    (119) Norgren, M.; Edlund, H. Lignin: Recent Advances and Emerging Applications. Curr. Opin. Colloid Interface Sci. 2014, 19, 409-416.
    (120) Tran, M. H.; Phan, D.-P.; Nguyen, T. H.; Kim, H. B.; Kim, J.; Park, E. D.; Lee, E. Y. Catalytic Hydrogenolysis of Alkali Lignin in Supercritical Ethanol over Copper Monometallic Catalyst Supported on a Chromium-based Metal–Organic Framework for the Efficient Production of Aromatic Monomers. Bioresour. Technol. 2021, 342, 125941.
    (121) Kumar, A.; Biswas, B.; Kaur, R.; Krishna, B. B.; Bhaskar, T. Hydrothermal Oxidative Valorisation of Lignin into Functional Chemicals: A Review. Bioresour. Technol. 2021, 342, 126016.
    (122) Hashmi, S. F.; Meriö-Talvio, H.; Ruuttunen, K.; Sixta, H. Influence of Reaction Conditions on Solvolysis of Organosolv Lignin Using Water and Green Organic Co-Solvents as Reaction Medium. FPT 2020, 197, 106200.
    (123) Dong, M.; Wu, C.; Chen, L.; Zhou, X.; Yang, W.; Xiao, H.; Ji, X.; Dai, H.; Hu, C.; Bian, H. Benzenesulfonic Acid-based Hydrotropic System for Achieving Lignocellulose Separation and Utilization under Mild Conditions. Bioresour. Technol. 2021, 337, 125379.
    (124) Shi, Y.; Xia, X.; Li, J.; Wang, J.; Zhao, T.; Yang, H.; Jiang, J.; Jiang, X. Solvolysis Kinetics of Three Components of Biomass Using Polyhydric Alcohols as Solvents. Bioresour. Technol. 2016, 221, 102-110.
    (125) Kumar, A.; Anushree; Kumar, J.; Bhaskar, T. Utilization of Lignin: A Sustainable and Eco-friendly Approach. J. Energy Inst. 2020, 93, 235-271.
    (126) Duan, D.; Wang, Y.; Ruan, R.; Tayier, M.; Dai, L.; Zhao, Y.; Zhou, Y.; Liu, Y. Comparative Study on Various Alcohols Solvolysis of Organosolv Lignin Using Microwave Energy: Physicochemical and Morphological Properties. Chem Eng Process 2018, 126, 38-44.
    (127) Li, H.; Cai, X.; Wang, Z.; Xu, C. Cost-effective Production of Organosolv Lignin from Woody Biomass Using Ethanol-Water Mixed Solvent at Mild Conditions. J. Supercrit. Fluids 2020, 158, 104745.
    (128) Ahmad, E.; Pant, K. K., Lignin Conversion: A Key to the Concept of Lignocellulosic Biomass-Based Integrated Biorefinery. In Waste Biorefinery, Bhaskar, T.; Pandey, A.; Mohan, S. V.; Lee, D.-J.; Khanal, S. K., Eds. Elsevier: 2018; pp 409-444.
    (129) Inkrod, C.; Raita, M.; Laosiripojana, N. Characteristics of Lignin Extracted from Pararubber Wood Sawdust Via Organosolv Fractionation. JGSEE 2017, 8, 71-76.
    (130) Bundhoo, Z. M. A. Microwave-assisted Conversion of Biomass and Waste Materials to Biofuels. Renewable Sustainable Energy Rev. 2018, 82, 1149-1177.
    (131) Yu, H. B.; Ding, L. F.; Wang, Z.; Shi, L. X. Study on Extraction of Polyphenol from Grape Peel Microwave-assisted Activity. Adv Mat Res. 2014, 864-867, 520-525.
    (132) Imman, S.; Arnthong, J.; Burapatana, V.; Champreda, V.; Laosiripojana, N. Fractionation of Rice Straw by a Single-step Solvothermal Process: Effects of Solvents, Acid Promoters, and Microwave Treatment. Renewable Energy 2015, 83, 663-673.
    (133) Zhou, L.; Budarin, V.; Fan, J.; Sloan, R.; Macquarrie, D. Efficient Method of Lignin Isolation Using Microwave-assisted Acidolysis and Characterization of the Residual Lignin. ACS Sustain. Chem. Eng. 2017, 5, 3768-3774.
    (134) Ninomiya, K.; Yamauchi, T.; Ogino, C.; Shimizu, N.; Takahashi, K. Microwave Pretreatment of Lignocellulosic Material in Cholinium Ionic Liquid for Efficient Enzymatic Saccharification. Biochem. Eng. J. 2014, 90, 90-95.
    (135) Bonechi, C.; Consumi, M.; Donati, A.; Leone, G.; Magnani, A.; Tamasi, G.; Rossi, C., Biomass: An Overview. In Bioenergy Systems for the Future, Dalena, F.; Basile, A.; Rossi, C., Eds. Woodhead Publishing: 2017; pp 3-42.
    (136) Klass, D. L., Photosynthesis of Biomass and Its Conversion-eelated Properties. In Biomass for Renewable Energy, Fuels, and Chemicals, Klass, D. L., Ed. Academic Press: San Diego, 1998; pp 51-90.
    (137) G. Calvo-Flores, F., Lignin a Renewable Raw Material. In Encyclopedia of Renewable and Sustainable Materials, 2020; p 2224.
    (138) Chio, C.; Sain, M.; Qin, W. Lignin Utilization: A Review of Lignin Depolymerization from Various Aspects. Renewable and Sustainable Energy Reviews 2019, 107, 232-249.
    (139) Ogunkoya, D.; Li, S.; Rojas, O. J.; Fang, T. Performance, Combustion, and Emissions in a Diesel Engine Operated with Fuel-in-water Emulsions Based on Lignin. Appl. Energy 2015, 154, 851-861.
    (140) Schoning, A. e. Absorptiometric Determination of Acid-soluble Lignin in Semichemical Bisulfite Pulps and in Some Woods and Plants. Svensk Papperstidning-nordisk Cellulosa 1965, 68, 607-613.
    (141) Horst, D. J.; Ramírez Behainne, J. J.; de Andrade Júnior, P. P.; Kovaleski, J. L. An Experimental Comparison of Lignin Yield from the Klason and Willstatter Extraction Methods. Energy Sustain Dev 2014, 23, 78-84.
    (142) Obst, J. R.; Kirk, T. K., Isolation of Lignin. In Methods in Enzymology, Academic Press: 1988; Vol. 161, pp 3-12.
    (143) Wang, R.; Luo, Y.; Jia, H.; Ferrell, J. R.; Ben, H. Development of Quantitative 13c Nmr Characterization and Simulation of C, H, and O Content for Pyrolysis Oils Based on 13c Nmr Analysis. RSC Adv. 2020, 10, 25918-25928.
    (144) Bu, L.; Tang, Y.; Gao, Y.; Jian, H.; Jiang, J. Comparative Characterization of Milled Wood Lignin from Furfural Residues and Corncob. J. Chem. Eng. 2011, 175, 176-184.
    (145) El Hage, R.; Brosse, N.; Chrusciel, L.; Sanchez, C.; Sannigrahi, P.; Ragauskas, A. Characterization of Milled Wood Lignin and Ethanol Organosolv Lignin from Miscanthus. Polym. Degrad. Stab. 2009, 94, 1632-1638.
    (146) Ramakoti, B.; Dhanagopal, H.; Deepa, K.; Rajesh, M.; Ramaswamy, S.; Tamilarasan, K. Solvent Fractionation of Organosolv Lignin to Improve Lignin Homogeneity: Structural Characterization. Bioresource Technology Reports 2019, 7, 100293.
    (147) Stark, N.; Yelle, D.; Agarwal, U., Techniques for Characterizing Lignin. In Lignin in Polymer Composites, 2015; pp 49-66.
    (148) Lin, S. Y.; Dence, C. W., Methods in Lignin Chemistry. Springer Berlin Heidelberg: 1992.
    (149) Capareda, S. C., Comprehensive Biomass Characterization in Preparation for Conversion. In Sustainable Biochar for Water and Wastewater Treatment, Mohan, D.; Pittman, C. U.; Mlsna, T. E., Eds. Elsevier: 2022; pp 1-37.
    (150) Agarwal, A.; Rana, M.; Park, J.-H. Advancement in Technologies for the Depolymerization of Lignin. FPT 2018, 181, 115-132.
    (151) Gude, V. G.; Patil, P.; Martinez-Guerra, E.; Deng, S.; Nirmalakhandan, N. Microwave Energy Potential for Biodiesel Production. Sustainable Chemical Processes 2013, 1, 5.
    (152) Davis, J. L.; Young, R. A. Microwave-Assisted Solvent Pulping. Holzforschung 1991, 45, 71-78.
    (153) Chemat, F.; Esveld, E. Microwave Super-heated Boiling of Organic Liquids: Origin, Effect and Application. Chem Eng Technol 2001, 24, 735-744.
    (154) Biermann, Raw Material and Pulp Making. In Handbook of Pulp and Paper, Elsevier Science: 2018.
    (155) Dillen, J. R.; Dillén, S.; Hamza, M., Wood Sources. In Pulp and Paper, 2016.
    (156) Riyaphan, J.; Phumichai, T.; Neimsuwan, T.; Witayakran, S.; Sungsing, K.; Kaveeta, R.; Phumichai, C. Variability in Chemical and Mechanical Properties of Pará Rubber (Hevea Brasiliensis) Trees. ScienceAsia 2015, 41, 251.
    (157) Nitsos, C.; Rova, U.; Christakopoulos, P. Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications Energies [Online], 2018, p. 50.
    (158) Monteil-Rivera, F.; Huang, G. H.; Paquet, L.; Deschamps, S.; Beaulieu, C.; Hawari, J. Microwave-assisted Extraction of Lignin from Triticale Straw: Optimization and Microwave Effects. Bioresour. Technol. 2012, 104, 775-782.
    (159) Johansen, T.; Schramm, J. Low-Temperature Miscibility of Ethanol-Gasoline-Water Blends in Flex Fuel Applications. Energy Sources 2009, Part A, 1634-1645.
    (160) Gupta, P.; Sae-wang, V.; Kanbua, P.; Laoonual, Y. Impact of Water Contents Blended with Ethanol on Si Engine Performance and Emissions. Journal of Research and Applications in Mechanical Engineering 2018, 1, 7-11.
    (161) Tappi, T. Acid-insoluble Lignin in Wood and Pulp. TAPPI Test Methods 2006, 1–7.
    (162) Alejandro, R.; Eduardo, E.; Juan, D.-R.; Rafael, S.; Isabel, B.; Antonio, R., Different Solvents for Organosolv Pulping. In Pulp and Paper Processing, Salim Newaz, K., Ed. IntechOpen: Rijeka, 2018.
    (163) Xu, J.; Jiang, J.; Hse, C.; Shupe, T. F. Renewable Chemical Feedstocks from Integrated Liquefaction Processing of Lignocellulosic Materials Using Microwave Energy. Green Chem. 2012, 14, 2821-2830.
    (164) Muley, P. D.; Mobley, J. K.; Tong, X.; Novak, B.; Stevens, J.; Moldovan, D.; Shi, J.; Boldor, D. Rapid Microwave-Assisted Biomass Delignification and Lignin Depolymerization in Deep Eutectic Solvents. Energy Convers. 2019, 196, 1080-1088.
    (165) Yuan, T.-Q.; Sun, S.-N.; Xu, F.; Sun, R.-C. Characterization of Lignin Structures and Lignin–Carbohydrate Complex (Lcc) Linkages by Quantitative 13c and 2d Hsqc Nmr Spectroscopy. J. Agric. Food Chem. 2011, 59, 10604-10614.
    (166) Guerra, A.; Mendonça, R.; Ferraz, A.; Lu, F.; Ralph, J. Structural Characterization of Lignin During Pinus Taeda Wood Treatment with Ceriporiopsis Subvermispora. AEM 2004, 70, 4073-4078.
    (167) Huang, C.; He, J.; Narron, R.; Wang, Y.; Yong, Q. Characterization of Kraft Lignin Fractions Obtained by Sequential Ultrafiltration and Their Potential Application as a Biobased Component in Blends with Polyethylene. ACS Sustain. Chem. Eng. 2017, 5, 11770-11779.
    (168) Lee, R. A.; Bédard, C.; Berberi, V.; Beauchet, R.; Lavoie, J.-M. Uv–Vis as Quantification Tool for Solubilized Lignin Following a Single-shot Steam Process. Bioresour. Technol. 2013, 144, 658-663.
    (169) Araújo, L. C. P.; Yamaji, F. M.; Lima, V. H.; Botaro, V. R. Kraft Lignin Fractionation by Organic Solvents: Correlation between Molar Mass and Higher Heating Value. Bioresour. Technol. 2020, 314, 123757.
    (170) Zhou, L.; Boot, M. D.; Johansson, B. H.; Reijnders, J. J. E. Performance of Lignin Derived Aromatic Oxygenates in a Heavy-duty Diesel Engine. Fuel 2014, 115, 469-478.
    (171) Zhou, L.; Boot, M. D.; Johansson, B. H. Comparison of Emissions and Performance between Saturated Cyclic Oxygenates and Aromatics in a Heavy-duty Diesel Engine. Fuel 2013, 113, 239-247.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE