| 研究生: |
郭文毅 Kuo, Wen-Yi |
|---|---|
| 論文名稱: |
有機改質層狀矽酸鹽對水泥砂漿微結構與材質之影響 Effects of Organo-Modified Layered Silicates on the Microstructure and Properties of Cement Mortars |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 透水係數 、水泥砂漿 、強度 、水庫淤泥 、蒙脫土 、層狀矽酸鹽 、有機改質 |
| 外文關鍵詞: | Permeability, Cement mortar, Strength, Reservoir sludge, Montmorillonite, Layered silicate, Organo-modified |
| 相關次數: | 點閱:133 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
層狀矽酸鹽為層狀固體,利用其層間可進行離子交換之特性,可將特殊性能之分子置入層狀矽酸鹽層間;本研究嘗試將層狀矽酸鹽層間置入有機分子改質後,作為水泥砂漿之補強材及細粒料。其中,將廣泛應用於高分子/黏土奈米複合材料之有機改質蒙脫土,部分取代水泥砂漿配比之水泥,機械性質實驗結果發現添加少量之有機改質蒙脫土,可使透水係數降低至標準砂漿試體之百分之ㄧ;同時砂漿試體抗壓及抗彎強度分別可增加達40%及10%;最佳狀況僅需添加小於水泥重量1%之有機改質蒙脫土,即可使水泥砂漿試體之抗壓及抗彎強度提高,並且擁有較低之透水係數。更進一步之研究,首創將台灣之水庫淤泥有機改質,並將有機改質水庫淤泥部份取代水泥砂漿配比之細粒料,機械性質實驗結果發現當有機改質水庫淤泥添加量達細粒料重量之30%以內,水泥砂漿試體可符合一般工程應用之強度要求;當改質水庫淤泥添加量介於細粒料重量之5%~10%,水泥砂漿試體將擁有絕佳之防水性能。關於有機改質蒙脫土及有機改質水庫淤泥對水泥砂漿微結構之影響,亦將於本研究中評估與討論;最後,本研究將提出水泥砂漿於不同水灰比時,藉由添加有機改質蒙脫土及有機改質水庫淤泥,以增強微結構及機械性質之最佳添加量。希冀本先期研究之成果,對有機改質矽酸鹽應用於現代混凝土之後續研究有所貢獻。
In this study, layered silicates, which are lamellar solids that can incorporate guest species into the galleries between their layers, are used as reinforcements and fine aggregates in cement mortars after they are organo-modified. Organo-modified montmorillonites (OMMT) which have been widely used in polymer/clay nano-composites are employed here as fillers and reinforcements in cement mortars. Experimental results indicate that the coefficients of permeability of cement mortars could be 100 times lower if a lower dosage of OMMT micro-particles is added. At the same time, the compressive and flexural strengths of cement mortars can be even increased up to 40% and 10%, respectively. It is also found that the optimal dosage of OMMT micro-particles to give higher compressive and flexural strengths and a lower coefficient of permeability for cement mortars is less than 1%. Furthermore, reservoir sludge in Taiwan mainly composed of smectite clay is first organo-modified. Organo-modified reservoir sludge (OMRS) particles are employed here as a substitute for a portion of fine aggregates in cement mortars. Experimental results indicate that it could be possible to replace up to 30% by weight of fine aggregates by OMRS particles in a cement mortar for normal practice. Also, excellent waterproof of cement mortars is achieved when the percentage of OMRS particles is within the range of 5~50%. The effects of OMMT and OMRS particles on microstructure of cement mortars are evaluated and discussed. Accordingly, the optimum dosages of OMMT and OMRS particles introduced in cement mortars with different water/cement ratios to enhance their microstructure and mechanical properties are proposed here. It is expected that this preliminary research can provide more physic insights before the organo-modified layered silicates are applied to modern concretes.
[1] S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539-1641.
[2] Z. Gao, W. Xie, J. M. Hwu, L. Wells, W. P. Pan, The characterization of organic modified montmorillonite and its filled PMMA nanocomposite, J. Thermal Analysis and Calorimetry 64 (2001) 467-475.
[3] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res. 8 (1993) 1185-1189.
[4] N. Hasegawa, H. Okamoto, M. Kawasumi, A. Usuki, Preparation and mechanical properties of polystyrene-clay hybrids, J. Appl. Polm. Sci. 74 (1999) 3359-3364.
[5] Y.Q. Zhang, J.H. Lee, H.J. Jang, C.W. Nah, Preparing PP/clay nanocomposites using a swelling agent, Composites Part B 35 (2004) 133-138.
[6] D. Saramas, D. C. Martin, R. Magaraphan, Optical films based on poly(p-phenylene vinylene) (PPV) and its nanocomposites, Rev. Adv. Mater. Sci. 5 (2003) 199-204.
[7] P.C. Aϊtcin, Cements of yesterday and today, concrete of tomorrow, Cem. Conr. Res. 30(2000) 1349-1359.
[8] R.L. Sharma, S.P. Pandey, Influence of mineral additives on the hydration characteristics of ordinary Portland cement, Cem. Conr. Res. 29 (1999) 1525-1529.
[9] L. Turanli, F. Bektas, P. J. M. Monteiro, Use of ground clay brick as pozzolanic material to reduce the alkali-silica reaction, Cem. Conr. Res. 33 (2003) 1539-1542.
[10] B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review, Cem. Conr. Composites 23 (2001) 441-454.
[11] H. Li, H.G. Xiao, J.P. Ou, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials, Cem. Conr. Res. 34 (2004) 435-438.
[12] H. Li, H. Xiao, J. Yuan, J. Ou, Microstructure of cement mortar with nano-particles, Composites Part B 35 (2004) 185-189.
[13] H. L. Luo, D. F. Lin, W. T. Kuo, The effects of nano-materials on the behaviors of sludge mortar specimens, Water Sci. Tech. 50 (2004) 57-65.
[14] G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cem. Conr. Res. 34 (2004) 1043-1049.
[15] M. Collepardi, J. J. O. Olagot, R. Troli, U. Skarp, Influence of amorphous colloidal silica and the properties of self compacting concretes, Proceedings of the international conference “ Challenges in concrete construction-innovations and developments in concrete materials and construction”, Dundee, Scotland, UK, 9-11 Sept. 2002, pp. 473-483.
[16] I. Campillo, J. S. Dolado, A. Porro, High-performance nanostructured materials for construction, Proceedings of the first international symposium on nanotechnology in construction, Paisley, Scotland, UK, 23-25 June 2003, pp. 215-225, published by the Royal Society of Chemistry, Cambridge, UK.
[17] L. Raki, J. J. Beaudoin, L. Mitchell, Layered double hydroxide-like materials: nanocomposites for use in concrete, Cem. Conr. Res. 34 (2004) 1717-1724.
[18] S. L. Colston, D. O’connor, P. Barnes, E. L. Mayes, S. Mann, H. Freimuth, W. Ehrfeld, Functional micro-concrete: The incorporation of zeolites and inorganic nano-particles into cement micro-structures, J. Mater. Sci. Letters 19 (2000) 1085-1088.
[19] J.H. Tay, W.K. Yip, Sludge ash as lightweight concrete material, J.Environ. Eng. ASCE 115 (1989) 56-64.
[20] J.I. Bhatty, K.J. Reid, Moderate strength concrete from lightweight sludge ash aggregates, Cem. Conr. Composites 11 (1989) 179-187.
[21] W.K. Yip, J.H. Tay, Aggregate made from incinerated sludge residue, J. Mater. Civil Eng. ASCE 2 (1990) 84-93.
[22] K.S. Wang, I.J. Chiou, C.H. Chen, D. Wang, Lightweight properties and pore structure of foamed material made from sewage sludge ash, Constr. Build. Mater. 19 (2005) 627-633.
[23] J.H. Tay, Bricks manufactured from sludge, J.Environ. Eng. ASCE 113 (1987) 278-284.
[24] J.H. Tay, Sludge ash as filler for portland cement concrete, J. Environ. Eng. ASCE 113 (1987) 354-351.
[25] J.H. Tay, Properties of pulverized sludge ash blended cement, ACI Mater. J. 84 (1987) 358-364.
[26] J. Monzo, J. Paya, M.V. Borrachero, A. Corcoles, Use of sewage sludge ash (SSA) - cement admixtures in mortars, Cem. Conr. Res. 26 (1996) 1389-1398.
[27] J.H. Tay, K.Y. Show, Properties of cement made from sludge, J. Environ. Eng. ASCE
117 (1991) 236-246.
[28] J. Monzo, J. Paya, M.V. Borrachero, E.P. Mora, Mechanical behavior of mortars containing sewage sludge ash (SSA) and portland cement with different tricalcium aluminate content, Cement and Concrete Research 29 (1999) 87-94.
[29] S.P. Pandey, R.L. Sharma, The influence of mineral additives on the strength and porosity of OPC mortar, Cem. Conr. Res. 30 (2000) 19-23.
[30] J.I.Bhatty, K.J. Reid, Compressive strength of municipal sludge ash mortars, ACI Mater. J. July-August (1989) 394-400.
[31] R. Khanbilvardi, S. Afshari, Sludge ash as fine aggregate for concrete mix, J. Environ. Eng. ASCE 121 (1995) 633-638.
[32] S. Mindess, J. F. Young, D. Darwin, Concrete, 2nd ed., Pearson Education, New Jersey, USA, 2003.
[33] E. Baker, Stress relaxation in tin-lead solders, Mater. Sci. Eng.. 38 (1979) 241-247.
[34] W. P. S. Dias, G. A. Khoury, and P. J. E. Sullivan, An activation energy approach for the temperature dependence of basic creep of hardened cement paste, Magazine of Conr. Res. 39 (1987) 141-148.
[35] J. Kubat, M. Rigdahl, and R. Selden, Internal stresses and activation volumes from the stress relaxation behavior of polyethylene at low deformations, J. Appl. Polym. Sci. 20 (1976) 2799-2809.
[36] J. Kubat, L.-Å. Nilsson, and M. Rigdhl, Internal stresses and two-step stress relaxation of polyethylene, Mater. Sci. Eng. 61 (1983) 267-274.
[37] R.E. Grim, Applied clay mineralogy, McGraw-Hill, New York, USA, 1962.