| 研究生: |
許仁哲 Hsu, Jen-Che |
|---|---|
| 論文名稱: |
內應力對無電鍍鎳銅磷析鍍於鋁基材上影響之研究 The Study of the Effect of Internal Stress on Electroless Ni-Cu-P Deposited on Al Substrate |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 擴散 、應力 、無電鍍鎳 、非晶質 |
| 外文關鍵詞: | Diffusion, Stress, Electroless Nickel, Amorphous |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於添加銅元素於無電鍍鎳鍍層中可改善鍍層的導電性、熱穩定性、抗腐蝕能力及可焊性等特性,同時無電鍍鎳銅磷鍍層本身具有非晶質結構和選擇性析鍍之特性,因此增加其在電子構裝中擴散障礙層及高硬度工業用元件方面的應用價值。然而在無電鍍鎳銅磷鍍層的實際應用中仍然遇到殘留拉伸應力的問題,過量的拉伸應力可能使得鍍層產生剝裂、破裂及加速應力腐蝕等現象。因此本研究在鍍液中添加Saccharin(C7H5NO3S)改變無電鍍鎳銅磷鍍層內應力的大小及種類,並觀察應力對鍍層熱性質及機械性質的影響。
然而,由於銅與鎳氧化還原電位的差異,在析鍍無電鍍鎳銅磷三元合金鍍層時仍然遇到元素分佈不均勻的問題。本研究發現調整鉗合劑的使用量並加以磁石攪拌下析鍍,可以達到較佳的鍍層均勻性及較高的析鍍速率。實驗結果顯示15 g/L NiSO4.6H2O、0.2 g/L CuSO4.5H2O、15 g/L NaH2PO2.H2O、30 g/L Na3C6H5O7.2H2O、40 g/L NH4Cl, pH值8.0之鍍液組成,在溫度90℃並加以磁石攪拌之析鍍條件下,可以獲得均勻性佳的非晶質Ni-11.51Cu-7.06P鍍層。
本研究係利用此一析鍍條件並在鍍液中分別添加0、8及10 g/L 糖精(Saccharin)來分別得到具拉伸應力、無應力及壓縮應力的無電鍍鎳鍍層,並進一步探討鍍層經時效處理後內應力對元素擴散及結晶行為的影響。研究結果顯示,在150℃時效時,銅原子是在Ni-Cu-P/Al擴散偶中擴散的主要元素。拉伸應力提升鎳銅磷鍍層中銅原子通過界面進入基材的擴散淨通量,並且促進了非晶質鍍層的結晶化行為與Ni3P及Al2Cu化合物的生成。然而無應力的鍍層經150℃時效處理後則無明顯的擴散行為。
本研究亦利用此由糖精的添加所得到不同應力狀態的無電鍍鎳銅磷鍍層,並進一步探討添加糖精對無電鍍鎳銅磷鍍層析鍍於鋁基材上之機械性質及破裂行為之影響。研究結果顯示糖精添加量從0 g/L增加至12 g/L,除了使鍍層內的金屬顆粒(Nodule)成長外,並可以逐漸消除鍍層中的空缺(Void),也因此改進了試片的微硬度值、降伏應力、彈性模數及極限抗拉應力。鍍層中的空缺數量也同樣影響了試片的破裂機制。當糖精添加量介於0~2 g/L時,鍍層的破裂機制呈現穿粒(Trans-nodular)破裂;而當糖精添加超過4 g/L時,破裂機制轉變成沿粒(Inter-nodular)破裂。
The incorporation of Cu with electroless Ni-P alloy will improve the electrical conductivity, thermal stability, corrosion resistance, solderability. The deposit exhibits amorphous structure and the deposition process has selective deposition characteristic. All of these properties render electroless Ni-Cu-P to potential application for diffusion barrier and hard industrial component. Nevertheless, the practical application of electroless Ni-Cu-P deposit still encounters the problem of excess intrinsic tensile stress that will cause peeling, cracking, and accelerate stress corrosion. For this reason, this present work manipulated the type and magnitude of stress in electroless Ni-Cu-P deposit on Al by controlling the concentration of saccharin (C7H5NO3S) in the plating solution, and investigated the thermal and mechanical properties of Ni-Cu-P deposits on Al with respect to saccharin addition and the stress.
The deposition of electroless Ni-Cu-P deposit still encounters the difficulty of non-uniform composition in deposit caused by the difference in redox potential between copper and nickel. It was found in this study that the uniformity of elemental distribution in Ni-Cu-P deposits and higher deposition rate can be improved by adjusting the addition of complexing agent in deposition solution and stirring process. An amorphous and uniform Ni-21.66Cu-11.60P deposit was produced when deposited in a solution consists of 15 g/l NiSO4.6H2O, 0.2 g/l CuSO4.5H2O, 15 g/l NaH2PO2.H2O, 30 or 40 g/l Na3C6H5O7.2H2O, and 40 g/l NH4Cl at pH 8.0 and 90℃ with magnetic stirring.
Consequently, 0, 8, and 10g/l saccharin was added in the specific deposition solution to obtain tensile, non-, and compressive stress of the electroless Ni-Cu-P deposits for studying the effect of stress on diffusion and crystallization behavior of the deposit. The results show that Cu is the predominant metallic diffusion element in the electroless Ni-Cu-P/ Al specimen upon aging at 150℃. The diffusion flux of Cu across the interface into the substrate is greatly enhanced by tensile stress of the deposit. Tensile stress of the deposit also enhances crystallization of the amorphous deposit and the formation of Ni3P and Al2Cu in the deposit upon aging. The deposit with zero stress exhibits nearly invisible diffusion flux upon aging.
This present work also investigated the mechanical properties and fracture behaviors with respect to saccharin addition and thus the different types of stress of Ni-Cu-P deposits on Al. The results show that an increase in saccharin addition, from 0 to 12 g/L, in the electroless deposition bath results in the growth of deposit nodule. It also eliminates the void from the deposit. The microhardness of the deposit, yield strength, modulus of elasticity, and ultimate tensile strength of the deposited Ni-Cu-P/Al specimen were thus improved. The fracture of the deposit takes place trans-nodularly at 0 and 2 g/L saccharin and changes to inter-nodular when the saccharin addition is above 4 g/L.
1. J. H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, USA, 1997, Chap. 3.
2. C. H. Zhong and S. Yi, Soldering Surf. Mount Technol., 11(1999)44.
3. R. H. Esser, A. Dimoulas, N. Strifas, A. Christou, and N. Papanicolau, Microelectron. Reliab., 38(1998)1307.
4. S. Y. Jang and K. W. Paik, Soldering Surf. Mount Technol., 10(1998)29.
5. M. A. Nicolet, Thin Solid Films, 52(1978)415.
6. 楊恆傑,直流式磁鍍鋯及氧化鋯薄膜性質、結構與擴散阻障層應用之研究,碩士論文(2002).
7. G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, 1990, Chap. 1.
8. G. G. Gawrilov, Chemical (Electroless) Nickel-Plating, Portcullis Press Ltd., Redhill, Surrey, 1979, Chap. 1.
9. J. W. Dini, Electrodeposition, Noyes Publications, Park Ridge, New Jersey, USA, 1993, Chap. 7.
10. C. J. Chen and K. L. Lin, Thin Solid Films, 370(2000)106.
11. P. G. Kim and K. N. Tu, Mater. Chem. Phys., 53(1998)165.
12. J. I. Han and S. J. Hong, Jpn. J. Appl. Phys., 36(1997)2091.
13. K. L. Lin and S. Y. Chang, Thin Solid Films, 288(1996)36.
14. G. Qi, G. J. Fokkink, and K. H. Chew, Thin Solid Films, 406(2002) 219.
15. B. R. Strohmzier, W. T. Evan, and D. M. Schrall, J. Mater. Sci., 28(1993)1563.
16. N. Krasteva, V. Fotty, and S. Armyanov, J. Electrochem. Soc., 141(1994)2864.
17. N. Krasteva, S. Armyanov, J. Georgieva, and N. Avramova, and V. Fotty, J. Electron. Mater. 24(1995)941
18. W. J. Tomlinson, M. W. Carroll, J. Mater. Sci., 25(1990)4972.
19. S. F. Luo, E. M. Ma, and P. X Li, J. Vac. Sci. Technol., A4(1986)2862.
20. D. Tachev, J. Georgieva, and S. Armyanov, Electrochim. Acta, 47(2001)359.
21. J. P. G. Farr and A. Abbas Noshani, Trans. IMF, 74(1996)221.
22. A. F. Schmeckenbecher, plating, 58(1971)905.
23. D. Kim, H. Matsuda, K. Aoki, and O. Takano, Plat. Surf. Finish., 83(1996)35.
24. S. Hotta, M. Sugano, and H. Honma, J. Sur. Fin. Japan, 44(1993)217.
25. M. Gulla, U.S. Pat. 3,764,352 (1973).
26. C. Y. Lee and K. L. Lin, Jpn. J. Appl. Phys. Part 1, 33(1994)4708.
27. O. Takano and K. Aoki, J. Met. Finish. Soc. Jpn., 34(1983)316.
28. Y. W. Wang, C. G. Xiao, and Z. G. Deng, Plat. Surf. Finish., 79(1992)57.
29. K. H. Hur, J. H. Jeong, and D. N. Lee, J. Mater. Sci., 26(1991)2037.
30. C. J. Chen and K. L. Lin, J. Electrochem. Soc., 146(1999)137.
31. C. J. Chen and K. L. Lin, J. Electron. Mater., 29(2000)1007.
32. H. Nawafune, T. Uegaki, and S. Mizumoto, Trans. IMF, 76(1998)231.
33. G. W. Powell, S. E. Mahmound, and K. Mills (Ed.), Metals Handbook, 9th Edition, Vol. 11, Metals Park, Ohio, 1986.
34. M. Ohring, The Materials Science of Thin Films, Academic Press, San Diego, USA, 1992, Chap. 9.
35. S. A. Armyanov, Metal Finish., 90(1992)36.
36. 劉嵩俊,鋼鐵內應力之研究和應用,中華民國鑄造學會,1997年.
37. W. Buckel, J. Vac. Sci. Technol., 6(1969)606.
38. R. Weil, Plating, 57(1970)1231.
39. R. Weil, Plating, 58(1971)50.
40. R. Weil, Plating, 58(1971)137.
41. M. F. Doerner, W. D. Nix, CRC Crit. Rev. Solid State Mater. Sci., 14(1988)225.
42. P. Chaundri, J. Vac. Sci. Technol., 9(1972)520.
43. D. W. Hoffman and J. A. Thornton, J. Vac. Sci. Technol., 16(1979)134.
44. J. W. Dini, Electrodeposition, Noyes Publications, Park Ridge, New Jersey, USA, 1993, Chap. 9.
45. J. B. Kushner, Stress in Electroplated Metals, Metal Progress, 1962.
46. U. Landau, Plating-New Prospects for an Old Art, Plenum Press, New York, 1982.
47. J. B. Kushner, Metal Finish., 56(1958)81.
48. H. Merer, Defect and Diffusion Forum, 129-130(1996)57.
49. P. Curie, J. Physique(Paris), 3(1894)393.
50. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, London, 1953.
51. H. C. Bauer, J. Völkl, J. Tretkowski, and G. Alefeld, Z. Phys., B29(1978)17.
52. J. Snoek, Jour. Physica, 6(1939)591.
53. R. W. Balluffi and L. I. Seigle, Acta Metall., 3(1955)170.
54. J. Cahn, Acta Metall., 10(1962)179.
55. G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, Florida, USA, 1990, Chap. 4.
56. S. Armyanov, O. Steenhaut, N. Krasteva, J. -L. Delplancke, R. Winand and J. Vereecken, J. Electrochem. Soc., 143(1996)3692.
57. H. A. Storms, K. F. Brown, and J. S. Steln, Anal. Chem., 49(1977)2023.
58. A. Brenner and S. Senderoff, J. Res. NBS, 42(1949)105.
59. R. B. Ross, Metallic Materials Specification Handbook, 3rd Edition, E. & F. N. Spon, London, 1980, Chap. 1.
60. C. R. Barrett, W. D. Nix, and A. S. Tetelman, The Principles of Engineering Materials, Prentice-Hall, New Jersey, USA, 1973, Chap. 6.
61. E. W. White and G. G. Johnson, X-ray Emission and Absorption Edge Wavelengths and Interchange Settings for LiF Geared Curved Crystal Spectrometers, Pennsylvania State University Special Publication, 2nd Edition, 1979, No. 1-70.
62. L. V. Azaroff, Elements of X-ray Crystallographey, Mc-Graw Hill, New York, 1968, Chap. 5.
63. B. D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison-Wesley, Reading, 1978, Chap. 1.
64. M. Cherkaoui, A. Srhiri, and E. Chassaing, Plat. Surf. Finish., 79(1992)68.
65. K. S. Rajam, I. Rajagopal, and S. R. Rajagopalan, Met. Finish., 41(1990)88.
66. A. Hung, Plat. Surf. Finish., 75(1988)62.
67. H. Ashassi-Sorkhabi, H. Dolati, N. Parvini-Ahmadi, and J. Manzoori, Plat. Surf. Sci., 79(1992)68.
68. E. Chassaing, M. Cherkaoui, and A. Srhiri, J. Appl. Electrochem., 23(1993)1169.
69. E. Chassaing, K. Vu Quang, and R. Wiart, J. Appl. Electrochem., 17(1987)1267.
70. A. Hung and K. M. Chen, J. Electrochem. Soc., 136(1989)72.
71. K. Liu, S. Li, S. Bi, H. Xue, and X. Liu, Rare Metals, 17(1998)228.
72. S. Armyanov, J. Georgieva, D. Tachev, E. Valova, N. Nyagolova, S. Mehta, D. Leibman, and A. Ruffini, Electrochemical and Solid-State Letters, 2(1999)323.
73. H. S. Yu, X. Sun, S. F. Luo, Y. R. Wang, and Z. Q. Wu, Appl. Surf. Sci., 191(2002)123.
74. T. Miyake, M. Kume, K. Yamaguchi, D. P. Amalnerkar, and H. Minoura, Thin Solid Films, 397(2001)83.
75. S. Armyanov, S. Vitkova, and O. Blajiev, J. Appl. Electrochem., 27(1997)185.
76. H. H. Trieu and R. R. Chandran, J. Electrochem. Soc., 136(1989)2218.
77. K. Masui, H. Tamemasa, and S. Maruno, Bull. Nagoya Inst. Technol., 35(1983)247.
78. Y. Zuo and R. M. Latanision, Mater. Sci. Eng., A159(1992)87.
79. L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, Electrochim. Acta., 47(2002)4139.
80. H. S. Yu, S. F. Luo, and Y. R. Wang, Surf. Coat. Technol., 148(2001)143.
81. K. Parker, Plat. Surf. Finish., 68(1981)71.
82. K. Parker and H. Shah, Plating, 58(1971)230.
83. J. Philibert, Defect and Diffusion Forum, 129-130(1996)3.
84. F. A. Lewis, K. Kandasamy, and X. Q. Tong, Int. J. Hydrogen Energy 27(2002)687.
85. A. H. Cottrell, Intermetallics, 4(1996)1.
86. A. Shankar and L. L. Seigle, Metall. Trans., A, Phys. Metall. Mater. Sci., 9(1978)1467.
87. J. Lipkowski and P. N. Ross, Adsorption of Molecules at Metal Electrodes, VCH Publishers, New York, 1992.
88. W. Plieth, Electrochim. Acta, 37(1992)2115.
89. L. Oniciu and L. Muresan, J. Appl. Electrochem., 21(1991)565.
90. T. C. Franklin, Surf. Coat. Technol., 82(1996)65.
91. S. Trasatti, Electrochim. Acta, 37(1992)2137.
92. T. C. Franklin, Surf. Coat. Techno., 30(1987)415.
93. L. Oniciu and L. Muresan, J. Appl. Electrochem., 21(1991)565.
94. J. K. Dennis and T. E. Such, Nickel and Chromium Plating, 3rd Edition, ASM, Materials Park, Ohio, 1993, Chap. 5.
95. R. Weil, G. J. Stanko, and D. E. Moser, Plat. Surf. Finish., 63(1976)34.
96. G. W. Powell, S. E. Mahmound, and K. Mills (Ed.), Metals Handbook, 9th Edition, Vol. 8, Metals Park, Ohio, 1986.
97. D. C. William, Materials Science and Engineering, John Wiley & Sons Inc., 3nd Edition, 1994.
98. S. H. Mohamed, O. Kappertz, J. M. Ngaruiya, T. P. Leervad Pedersen, R. Drese, and M. Wuttig, Thin Solid Films, 429(2003)135.
99. M. J. J. Theunissen, J. M. L. van Rooij-Mulder, C. W. T. Bulle-Lieuwma, D. E. W. Vandenhoudt, D. J. Gravesteijn, and G. F. A. van de Walle, J. Cryst. Growth., 118(1992)125.
100. J. H. Jou, L. Hsu, S. Yeh, and T. Shyy, Thin Solid Films, 201(1991)69.