| 研究生: |
吳昱奇 Wu, Yu-Chi |
|---|---|
| 論文名稱: |
裂紋填充物對應力強度因子之影響 |
| 指導教授: |
宋見春
Sung, Jian-Chuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 裂紋 、應力強度因子 |
| 外文關鍵詞: | SIF, crack |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文探討內含單一裂紋之無限域均質線彈性體,在裂紋內填入彈性體後,其裂紋尖端之應力強度因子值。填充物性質以線性彈簧模擬之。文中引用在無限域中含單一裂紋受無窮遠端作用力之基本解,與假設作用於裂紋表面之未知應力,利用線性疊加原理,推演未知應力的奇異積分方程式。將此奇異積分方程式離散化後,推得其結果,並可藉此得到應力強度因子值。文中分別就平面內及反平面內的問題、改變裂紋內填入彈性體的位置,藉以求取分段位置與應力強度因子間的關係。
none
參考文獻
Bhargava, R. D., and Radhakrishna, H. C., “Elliptic inclusion in orthotropic medium,” J. Phys. Soc. Japan, Vol. 19, pp. 396-405 (1964).
Chadwick, P., and Smith, G. D., “Foundations of the theory of surface waves in anisotropic elastic materials,” Adv. Appl. Mech., Vol. 17, pp. 303-376(1977).
Chen, W. T., “On an elliptic elastic inclusion in an anisotropic medium,” Q. J. Mech. Appl. Math., Vol. 20, pp. 307-313(1967b).
Eshelby, J. D., Read, W. T., and Shockley, W., “Anisotropic elasticity with applications to dislocation theory,” Acta Metall. Vol. 1, pp. 251-259(1953).
Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. Roy. Soc. London, Vol. A241, pp. 376-396(1957).
Eshelby, J. D., “The elastic fiel outside an ellipsoidal inclusion,” Proc. Roy. Soc. London, Vol. A252, pp. 561-569(1959).
Hwu, Chyanbin, and Ting, T. C. T., “Two dimensional problems of the anisotropic elastic solid with an elliptic inclusion,” Q. J. Mech. Appl. Math., Vol. 42, pp. 553-572(1989).
Hwu, Chyanbin, and Yen. Wen J., “Green’s functions of two-dimensional anisotropic plates containing an elliptic hole,” Int. J. Solids Structures, Vol. 27, pp.1705-1719(1991).
Hwu, Chyanbin, and Yen. Wen J., “Plane problems for anisotropic bodies with an elliptic hole subjected to arbitrary loadings,” The Chinese Journal of Mechanics, Vol. 8, pp.123-139(1992).
Jaswon, M. A., and Bhargava, R. D., “Two-dimensional elastic inclusion proplems,” Proc. Camb. Phil. Soc., Vol. 57, pp. 669-680 (1961).
Jones, R. M., Mechanics of Composite Materials, McGrawHill, New York (1975).
Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Gostekhizdat, Moscow (1950).
Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, transl. by J. R. M. Radok, Noordhoof, Groningen (1953).
Stroh, A. N., “Dislocations and cracks in anisotropic elasticity,” Phil. Mag., Ser. 7, pp. 625-646(1958).
Ting, T. C. T., “Effects of change of reference coordinates on the stress analyses of anisotropic elastic materials,” Int. J. Solids Structures, Vol. 18, pp. 139-152(1982).
Ting, T. C. T., “Some identities and the structure Ni in the Stroh formalism of anisotropic elasticity,” Quarterly of Applied Mathematics, Vol. 46, pp. 109-120(1988).
Voigt, W., Lehrbuch der Kristallphysik, Leipzig, 560(1910).
Yang, H. C., and Chou, Y. T., “Generalized plane problems of an elliptic inclusion in an anisotropic medium,” J. Appl. Mech., Vol. 44, pp. 437-444(1976).
Yeh, C. S., Shu, Y. C., and Wu, K. C., “Conservation laws in anisotropic elasticity I. Basic frame work,” Proc. Roy. Soc. London, Vol. 443, pp. 139-151(1993a).
Yeh, C. S., Shu, Y. C., and Wu, K. C., “Conservation laws in anisotropic elasticity II. Extension and application to thermoelasticity,” Proc. Roy. Soc. London, Vol. 443, pp. 153-161(1993b).
顏文章, “含介質或孔洞異向性彈性體之分析及其在複合層版之應用”,博士論文,國立成功大學航空太空工程研究所,1990。