簡易檢索 / 詳目顯示

研究生: 汪憶君
Wang, Yi-Chung
論文名稱: 不同無機鹽混凝劑搭配高分子凝集劑混凝處理高濁度原水之研究
A Study on the Coagulation of High-turbidity Surface Water with Inorganic Salts Coagulants Coupled with Polymers
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 103
中文關鍵詞: 高濁度原水高分子凝集劑無機鹽混凝劑陰離子型
外文關鍵詞: high turbidity water, polymers, inorganic coagulant, anionic
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於雨量豐沛的亞熱帶地區,但因山勢險峻且河川短促,雨水無法保存,因此經年仰賴水庫蓄水功能。近年受到全球氣候變遷影響,以致颱風頻繁形成,而颱風所帶來豪大雨將集水區上游之泥沙沖刷至水庫,使得水庫原水濁度飆升。例如2009年莫拉克颱風就曾重創南化水庫,使原水濁度飆升達70,000 NTU,導致淨水場停止供水,除了影響民生用水及工業用水,也造成嚴重的經濟損失。在這種水中膠體顆粒數量多的情況下,除了增加淨水設備負荷,處理過後所產生之大量沉澱污泥亦成為目前淨水場所面臨之挑戰。
    台灣淨水場常以多元氯化鋁作為混凝劑處理低濁度原水,當原水濁度飆升時則須添加大量混凝劑,以符合出水水質之要求。先前研究指出,額外添加高分子凝集劑有助於水中膠體顆粒的沉降,可提升濁度去除效果,但因聚合物中殘留單體之毒性,使用上必須符合我國飲用水相關法規之規範。為提供淨水場於高濁度期間有一套緊急應變處理方法,以縮短限水時限,本研究主要針對快速減少水中之膠體顆粒物及處理後所產生之污泥量為處理目標,使用無機鹽類搭配高分子凝集劑,於實驗室進行瓶杯試驗,分析並探討結果。
    使用無機鹽混凝劑處理高濁度原水,實驗結果以氯化鐵處理效果較佳,可有效降低水中之膠體顆粒。以有機高分子凝集劑處理高濁度原水,濁度去除效果較無機鹽類差,但卻發現陰離子型之聚丙烯醯胺 (PAM)其濁度去除速率甚快,且產生較少量之沉澱污泥。而在混合系統中,使用無機鹽類搭配高分子凝集劑處理效果優於單獨使用無機鹽混凝劑,並以氯化鐵搭配陰離子型之聚丙烯醯胺有最佳濁度去除效果及最少沉澱污泥量。於此系統下,添加高分子凝集劑可有效減少無機鹽類之使用量,進而大幅減少污泥體積。
    由前述混合系統中之最佳組合方式 (無機鹽混凝劑搭配陰離子型之PAM),探討加藥順序對此系統之影響。結果顯示加藥順序以先加入陰離子型之PAM,而後添加無機鹽混凝劑有最佳之濁度去除效果及最少之沉澱污泥量。

    Although the mean annual rainfall of Taiwan is about 2,500 mm, the seasonal distribution is very uneven. Further, the rivers are short and steep. It is difficult to abstract water directly from river for public water supply. Therefore, reservoirs are built for water storage. Recently, changes in global climate result in frequent formation of typhoon with heavy rainfall, which cause landslide and bring sediments of upstream catchment area to reservoirs. For example, in 2009, Typhoon Morakot caused severe damages to southern Taiwan. The water supply to part of the area was suspended for up to a week. This was caused partly by the extremely high turbidity (over 70,000 NTU) of raw water from Nanhua Reservoir, which was over the capacity of water treatment facilities. The handling of large amount of sludge produced during high turbidity period was also a challenge to the water works.
    In this study, series of jar tests with synthetic high turbidity water were conducted to look into the effect of polymers, as coagulant-aid, on enhancing the settling rate of floc and also the consolidation rate of the sludge produced. First, inorganic coagulants, namely polyaluminum chloride (PACl) and ferric chloride, were used as the sole coagulant. Next, polymers, with various compositions and characteristics, and were approved by the government for drinking water treatment, were also tested as the sole coagulant. Finally, inorganic coagulants coupled with polymer were tested. In addition to the measurement of residual turbidity of the supernatant after jar tests, the height of the solid-liquid interface when the coagulated waters were settling in an Imhoff Cone was recorded under various time.
    The results show that either PACl or ferric chloride, as sole coagulant, could effectively remove the high turbidity (about 4600 NTU) of the synthetic source water, and the performance of ferric chloride was superior to that of PACl. However, high dosages were needed for both coagulants. When polymers were used as sole coagulants, turbidity removal was not as good as that of inorganic coagulants. However, anionic polyacrylamide was found to form floc with highest settling velocity and also the lowest sludge volume. The performance of the inorganic coagulant coupled with polymer was superior to that of the sole coagulant system. The adding of small dosage of polymer could effectively reduce the amount of inorganic coagulant required, and, also the volume of the sludge produced. Among the dual coagulant system, ferric chloride coupled with anionic polyacrylamide had the best performance for both residual turbidity and sludge volume. The order of adding chemicals affects the removal of turbidity and sludge volume in dual-system. It is better to add polymer (anionic PAM) before inorganic coagulant.

    摘要…...……………………………………………………………..…....I Abstract……………………………………………………………….…III 誌謝…………………………………………………………………....…V 目錄...…………………………………………………………...........…VII 表目錄……...………………………………………………..……..........XI 圖目錄………………………..……………………………………..….XIII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 高濁度原水 3 2-1-1 濁度來源及其特性 3 2-1-2 高濁度原水對淨水程序影響 8 2-1-3 高濁度原水衍生污泥問題 11 2-2 混凝 12 2-2-1 混凝原理 12 2-2-2 影響混凝作用因素 15 2-2-3 混凝劑 17 2-3 高分子凝集劑 22 2-3-1 高分子凝集劑分類與特性 22 2-3-2 高分子凝集劑凝集機制 27 2-3-3 高分子凝集劑使用限制 31 2-3-4 電荷密度測定 32 第三章 實驗材料及方法 35 3-1 實驗流程規劃 35 3-2 實驗材料 37 3-2-1 人工原水配製 37 3-2-2 無機鹽混凝劑之配製 39 3-2-3 高分子凝集劑之配製 39 3-2-4 高分子凝集劑之電荷密度 40 3-3 瓶杯試驗 42 3-3-1 瓶杯試驗設備及操作條件 42 3-3-2 加藥順序 42 3-4 水質分析 42 3-4-1 濁度 42 3-4-2 pH值 43 3-4-3 導電度 43 3-4-4 鹼度 44 3-4-5 界達電位 45 3-4-6 非揮發溶解性有機碳 46 3-4-7 UV254吸光值 47 3-4-8 沉澱污泥體積 47 3-4-9 顆粒粒徑大小與數量 48 第四章 結果與討論 49 4-1 高分子凝集劑特性 49 4-2 高濁度人工原水特性 50 4-2-1 高濁度人工原水水質 50 4-2-2 高濁度原水未經處理之沉降效果 51 4-3 無機鹽混凝劑對高濁度原水之混凝試驗 53 4-3-1 多元氯化鋁混凝效果 53 4-3-2 氯化鐵混凝效果 55 4-3-3 無機鹽混凝劑對沉澱污泥之影響 57 4-4 高分子凝集劑對高濁度原水之混凝試驗 59 4-4-1 高分子凝集劑混凝效果 59 4-4-2 高分子凝集劑對沉澱污泥之影響 64 4-5 混合系統對高濁度原水之混凝試驗 67 4-5-1 多元氯化鋁配合高分子凝集劑混凝效果 67 4-5-2 氯化鐵配合高分子凝集劑混凝效果 71 4-5-3 混合系統對沉澱污泥之影響 75 4-6 高分子凝集劑減少無機鹽混凝劑劑量之混凝試驗 80 4-6-1 高分子凝集劑配合減少多元氯化鋁劑量之效果 80 4-6-2 高分子凝集劑配合減少氯化鐵劑量之效果 83 4-6-3 高分子凝集劑配合減少無機鹽混凝劑對沉澱污泥之影響 87 4-7 加藥順序混合系統之影響 89 4-7-1 加藥順序對混合系統之影響 90 4-7-2 加藥順序對沉澱污泥體積之影響 92 4-7-3 加藥成本估算 92 第五章 結論與建議 95 5-1 結論 95 5-2 建議 96 參考文獻 97

    Aguilar, M. I., Saez, J., Llorens, M., Soler, A., Ortuno, J. F., Meseguer, V. and Fuentes, A., 2005. Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere, 58(1): 47-56.
    Akitt, J. W. and Farthing, A., 1981. Al-27 Nuclear Magnetic-Resonance Studies of the Hydrolysis of Aluminum(Iii) .5. Slow Hydrolysis Using Aluminum Metal. Journal of the Chemical Society-Dalton Transactions,(7): 1624-1628.
    Amirtharagjah, A. and O'Melia, C. R., 1990. Chap 6 : Coagulation and Flocculation. AWWA.
    Amirtharajah, A. and Mills, K. M., 1982. Rapid-Mix Design for Mechanisms of Alum Coagulation. Journal American Water Works Association, 74(4): 210-216.
    Annadurai, G., Sung, S. S. and Lee, D. J., 2004. Simultaneous removal of turbidity and humic acid from high turbidity stormwater. Advances in Environmental Research, 8(3-4): 713-725.
    AWWA, 1979. Organics Removal by Coagulation - Review and Research Needs. Journal American Water Works Association, 71(10): 588-603.
    AWWARF and IWSA,1998. Treatment Process Selection for ParticleRemoval, edited by J.B. McEwen, American Water Works Association, Denver, Colorado.
    Bachand, P. A. M., Heyvaert, A. C., Prentice, S. E. and Delaney, T., 2010. Feasibility Study and Conceptual Design for Using Coagulants to Treat Runoff in the Tahoe Basin. Journal of Environmental Engineering-Asce, 136(11): 1218-1230.
    Baran, S. and Gregory, D., 1996. Flocculation of kaolin suspensions by cationic polyelectrolytes. Colloid Journal, 58(1): 9-14.
    Bertsch, P. M., 1987. Conditions for Al-13 Polymer Formation in Partially Neutralized Aluminum Solutions. Soil Science Society of America Journal, 51(3): 825-828.
    Bina, B., Mehdinejad, M. H., Nikaeen, M. and Attar, H. M., 2009. Effectiveness of Chitosan as Natural Coagulant Aid in Treating Turbid Waters. Iranian Journal of Environmental Health Science & Engineering, 6(4): 247-252.
    Bolto, B., 2005. Reaction of chlorine with organic polyelectrolytes in water treatment: A review. Journal of Water Supply Research and Technology-Aqua, 54(8): 531-544.
    Bolto, B. and Gregory, J., 2007. Organic polyelectrolytes in water treatment. Water Research, 41(11): 2301-2324.
    Delgado, S., Diaz, F., Garcia, D. and Otero, N., 2003. Behaviour of inorganic coagulants in secondary effluents from a conventional wastewater treatment plant. Filtration & Separation, 40(7): 43-46.
    Dentel, S. K., 1991. Coagulant Control in Water-Treatment. Critical Reviews in Environmental Control, 21(1): 41-135.
    Dentel, S. K., Gucciardi, B. M., Bober, T. A., Shetty, P. V. and Resta, J. J. (1989). Procedures Manual for Polymer Selection in Water Treatment Plants. NewYork, AWWA Research Foundation and the American Water Works Association.
    Ersoy, B., Tosun, I., Gunay, A. and Dlkmen, S., 2009. Turbidity Removal from Wastewaters of Natural Stone Processing by Coagulation/Flocculation Methods. Clean-Soil Air Water, 37(3): 225-232.
    Gill, R. I. S. and Herrington, T. M., 1987. The Effect of Surface-Charge on the Flocculation of Kaolin Suspensions with Cationic Polyacrylamides of Varying Molar Mass but Similar Cationic Character. Colloids and Surfaces, 25(2-4): 297-310.
    Gill, R. I. S. and Herrington, T. M., 1987. The Flocculation of Kaolin Suspensions Using Polyethylenimine and Cationic Polyacrylamides of the Same Molar Mass but Different Charge-Density. Colloids and Surfaces, 28(1): 41-52.
    Gregory, J., 2006. Particles in Water Properties and Processes. Taylor & Francis Group.
    Gregory, J. and Sheiham, I., 1974. Kinetic aspects of flocculation by cationic polymers. British Polymer Journal, 6(1): 47-59.
    Hogg, R., 1999. The role of polymer adsorption kinetics in flocculation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 146(1-3): 253-263.
    Hoyer, O. and Schell, H., 1998. Monitoring raw water quality and adjustment of treatment processes - Experiences at the Wahnbach reservoir. Water Science and Technology, 37(2): 43-48.
    Huang, C. P., Lin, J. L., Chin, C. J. M., Pan, J. R. and Wang, D. S., 2008. Coagulation behavior of Al-13 aggregates. Water Research, 42(16): 4281-4290.
    Hurst, A. M., Edwards, M. J., Chipps, M., Jefferson, B. and Parsons, S. A., 2004. The impact of rainstorm events on coagulation and clarifier performance in potable water treatment. Science of the Total Environment, 321(1-3): 219-230.
    Johnson, P. N. and Amirtharajah, A., 1983. Ferric Chloride and Alum as Single and Dual Coagulants. Journal American Water Works Association, 75(5): 232-239.
    Jia, Z. Q., He, F. and Liu, Z. Z., 2004. Synthesis of polyaluminum chloride with a membrane reactor: Operating parameter effects and reaction pathways. Industrial & Engineering Chemistry Research, 43(1): 12-17.
    Kam, S. K. and Gregory, J., 1999. Charge determination of synthetic cationic polyelectrolytes by colloid titration. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 159(1): 165-179.
    Kawamura, S., 1991. Effectiveness of Natural Polyelectrolytes in Water-Treatment. Journal American Water Works Association, 83(10): 88-91.
    Lin, J. L., Huang, C. P., Chin, C. J. M. and Pan, J. R., 2009. The origin of Al(OH)(3)-rich and Al-13-aggregate flocs composition in PACl coagulation. Water Research, 43(17): 4285-4295.
    Liu, H. J., Hu, C. Z. and Qu, J. H., 2011. Coagulation behaviour of polyaluminium chloride with different aluminium speciation. International Journal of Environment and Pollution, 45(1-3): 281-287.
    Mehdinejad, M. H., Bina, B., Nikaeen, M. and Attar, H. M., 2009. Effectiveness of chitosan as natural coagulant aid in removal of turbidity and bacteria from turbid waters. Journal of Food Agriculture & Environment, 7(3-4): 845-850.
    Napper, D. H., 1983. Polymeric stabilization of colloidal dispersions. Academic Press. London ; New York.
    Ozacar, M. and Sengil, I. A., 2003. Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 229(1-3): 85-96.
    Packham, R. F., 1965. Some Studies of Coagulation of Dispersed Clays with Hydrolyzing Salts. Journal of Colloid Science, 20(1): 81-&.
    Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and Buchhammer, H. M., 2003. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 218(1-3): 47-57.
    Renault, F., Sancey, B., Badot, P. M. and Crini, G., 2009. Chitosan for coagulation/flocculation processes - An eco-friendly approach. European Polymer Journal, 45(5): 1337-1348.
    Roussy, J., Van Vooren, M. and Guibal, E., 2005. Influence of chitosan characteristics on coagulation and flocculation of organic suspensions. Journal of Applied Polymer Science, 98(5): 2070-2079.
    Rout, D., Verma, R. and Agarwal, S. K., 1999. Polyelectrolyte treatment - An approach for water quality improvement. Water Science and Technology, 40(2): 137-141.
    Ruden, C., 2004. Acrylamide and cancer risk - expert risk assessments and the public debate. Food and Chemical Toxicology, 42(3): 335-349.
    Salehizadeh, H. and Shojaosadati, S. A., 2001. Extracellular biopolymeric flocculants - Recent trends and biotechnological importance. Biotechnology Advances, 19(5): 371-385.
    Shi, B. Y. and Tang, H. X., 2006. Preparation and characterization of organic polymer modified composite polyaluminum chloride. Journal of Environmental Sciences-China, 18(2): 214-220.
    Shih, W. K. and Chiang, C. L. 1998. Treatment of High Turbidity Water. Proceeding 4th International Workshop on Drinking Water Quality Management and Treatment Technology, Taiwan, R.O.C.
    Snoeyink, V. L. and Jenkins, D., 1982. Water Chemistry. John Wiley & Sons. New York. 262.
    Stumm, W. and O'Melia, C. R., 1968. Stoichometry of coagulation. 60(5): 514.
    Stumm, W. M., J. J., 1981. The Solid-Solution Interface Aquatic Chemistry. John Wiley and Sons, New York: 612.
    Tyagi, V. K., Khan, A. A., Kazmi, A. A. and Chopra, A. K., 2010. Enhancement of Coagulation Flocculation Process Using Anionic Polymer for the Post Treatment of UASB Reactor Effluent. Separation Science and Technology, 45(5): 626-634.
    Ueno, K. and Kina, K. y., 1985. Colloid titration-A rapid method for the determination of charged colloid. Journal of Chemical Education, 62(7): 627-null.
    USEPA, 2001. Certified product listins. ANSI/NSF Standard 60. InternationalNSF. Washington, NSF.
    Vanbenschoten, J. E. and Edzwald, J. K., 1990. Chemical Aspects of Coagulation Using Aluminum Salts .2. Coagulation of Fulvic-Acid Using Alum and Polyaluminum Chloride. Water Research, 24(12): 1527-1535.
    Wang, D. S., Gregory, J. and Tang, H. X., 2008. Mechanistic difference of coagulation of kaolin between PACl and cationic polyelectrolytes: A comparative study on zone 2 coagulation. Drying Technology, 26(8): 1060-1067.
    Watanabe, Y., Kubo, K. and Sato, S., 1999. Application of amphoteric polyelectrolytes for sludge dewatering. Langmuir, 15(12): 4157-4164.
    Weber, W. J., Jr., 1972. Physicochemical Processes for Water Quality Control. Wiley-Interscience Publication. New York.
    Yu, X. and Somasundaran, P., 1996. Role of polymer conformation in interparticle-bridging dominated flocculation. Journal of Colloid and Interface Science, 177(2): 283-287.
    Zhou, Y. and Franks, G. V., 2006. Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir, 22(16): 6775-6786.
    Zonoozi, M. H., Moghaddam, M. R. A. and Arami, M., 2011. Study on the removal of acid dyes using chitosan as a natural coagulant/coagulant aid. Water Science and Technology, 63(3): 403-409.
    周珊珊,洪仁陽,彭明鏡,陳誼彰,黃志彬,2006. 高濁度原水混凝前處理模廠最適化之研究:加藥方式及程序組合.
    翁韻雅,2003. 以高分子凝集劑處理高濁度原水之研究.
    高肇藩,1978. 給水工程 (衛生工程。自來水篇). 編著者發行. 台南.
    常青,2003. 水處理絮凝學. 化學工業出版社, 環境科學與工程出版中心. 6-10.
    康世芳,2001. 淨水污泥餅再利用技術調查及應用於台北自來水事業淨水場可行性評估, 台北自來水事業處.
    張煥獎,江建忠,2007. 南化廠高濁度時混凝劑及助凝劑之應用. 台灣省自來水公司.
    黃永富,2010. 高分子凝聚劑處理淨水場高濁度原水成效之研究.
    蔡騰龍,1993. 聚電解質與淨水處理. 正文書局有限公司.
    劉佳宏,2007. 混凝劑種類對低濁度原水混凝影響之研究.
    鄭錦桐,邱顯晉,林彥享,陳錦清,2005. 石門水庫集水區淤積與原水高濁度之成因與因應對策探討. 第十一屆台灣地區地球物理學術研討會暨蔡義本教授榮退專題研究研討會論文集.
    賴伯勳,鍾朗恭,王瑋,2005. 颱風期間石門水庫濁度處理與應變措施.

    無法下載圖示 校內:2012-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE