| 研究生: |
徐鈺暉 Hsu, Yu-Hui |
|---|---|
| 論文名稱: |
藉由奈米結構改善氮化鎵發光二極體之光電特性 Improvement of Optoelectronic Characteristics of GaN-based LED by Nano Structure |
| 指導教授: |
賴韋志
Lai, Wei-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 奈米結構 、氮化鎵 、發光二極體 、光萃取效率 |
| 外文關鍵詞: | nano structure, GaN, LED, LEE |
| 相關次數: | 點閱:121 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討將奈米結構製作於氮化鎵發光二極體(LED)表面對光電特性的影響,被奈米結構所粗化的LED元件表面,可減少因為全反射而被侷限在元件內部的光,進而提升光萃取效率(LEE)。
實驗的部份將討論兩項變化因素,第一部份將製作不同尺寸的奈米結構,並與標準LED互相比較光電特性。使用直徑為500nm、700nm、750nm和1000nm材料為polystyrene (PS)的奈米小球,製作四種不同尺寸的奈米結構,在20mA電流注入下,使用500nm、700nm、750nm和1000nm 奈米小球製作的奈米結構,光輸出功率分別提升了34.39%、31.62%、41.62%和88.92%。
第二部份將改變奈米結構的分佈面積,製作選擇性區域和全區域兩種面積分佈。同樣的,此兩種結構將與標準LED互相比較,在20mA的電流注入下,標準LED、選擇性區域和全區域製作奈米結構LED的光輸出功率分別為3.34、4.74和4.42 mW。
因為磊晶成長的條件差異,會造成奈米結構的型貌有所不同,因此最後將藉由Trace Pro光學模擬軟體,模擬不同型貌對光輸出功率的影響。除此之外,亦將模擬實驗中所製作的各尺寸奈米結構,再次證明奈米結構能有效提升光輸出功率。
In this study, we produced nano structure on GaN-based LEDs to improve its optoelectronic characteristics. Roughened surface of LED was expected to reduce the light confined inside the device due to total reflection, with a corresponding increase in light extraction efficiency (LEE).
In this experiment, we discussed two different variables. One was the different scales of nano structure; comparing their optoelectronic characteristics with conventional LED. We used 500nm, 700nm, 750nm and 1000nms’ polystyrene (PS) sapphire to produce four different scales of nano structure on LED. Under 20-mA current injections the light output power of 500nm, 700nm, 750nm, and 1000nm enhanced about 34.39%, 31.62%, 41.62% and 88.92%.
The distribution area of nano structure was changed for the other variable. Nano structures distributed on selective regions and full regions. These two types of LED were analyzed optoelectronic characteristics too, comparing with conventional LED. The 20-mA of light output power of conventional LED, selective regions LED, and full region LED were 3.34, 4.74, and 4.42 mW.
Finally, the divergence of epitaxial conditions led to nano structures with different shapes. The effect of different shapes on light output power was analyzed by Trace Pro optical simulation software. In addition, we used simulation software to check our experiment, as a confirmation that nano structure can actually improve LEDs’ light output power.
第一章
[1] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer. (1997).
[2] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai,“Superbright green InGaN single-quantum-well structure light-emitting diodes”, Jpn. J. Appl. Phys., vol. 34, no.10B, pp. L1332-L1335, (1995).
[3] 史光國, “半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司, (2004).
[4] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press,(2006).
[5] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., vol. 79, no. 10, pp. 7433-7473, (1996).
[6] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing,
defects, and devices”, J. Appl. Phys., vol. 86, no. 1, pp.1, (1999).
[7] E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart”, Science, vol. 308, no. 5726, pp. 1274-1278, (2005).
[8] Z. H. Feng, Y. D. Qi, Z. D. Lu, K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy”, Journal of Crystal Growth, vol. 272, pp. 327-332, (2004).
[9] H. Y. Shin, S.K. Kwon , Y. I. Chang, M. J .Cho, K. H. Park, “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate”, Journal of Crystal Growth, vol. 311, pp. 4167-4170, (2009).
[10] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, K. S. Wen, R. H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates”, Journal of Physics and Chemistry of Solids, vol.69, pp.714-718, (2008).
[11] H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu and S. C.Wang, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography”, Nanotechnology, vol. 19, no. 18, pp. 5301-5304, (2010).
[12] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light
extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography”, Appl. Phys. Lett., vol. 91, no. 17, pp. 1114-1116, (2007).
[13] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., vol. 93, no. 11,pp.9383-9385, (2003).
[14] H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C.Yu and H. C. Kuo, “Enhancement of light output power of GaN-basedlight-emitting diodes using a SiO2 nano-scale structure on a p-GaNsurface”, Semicond. Sci. Technol, vol. 25, no. 6, pp. 5007-5010, (2010).
[15] C. S. Chang, S. J. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee,
Senior Member, IEEE, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls”, IEEE Photon. Tech. Lett., vol. 16, no. 3, pp. 750-752, (2004).
[16] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikedaa, “Characterization of threading dislocations in GaN epitaxial layers”, Appl. Phys. Lett., vol. 76, no. 23, pp. 3421-3423, (2000).
[17] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films”, Appl. Phys. Lett.,
vol. 76, no. 25,pp. 3768-3770, (2000).
[18] K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, “Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes”, Appl. Phys. Lett., vol. 92, no. 24, pp. 3126-3128, (2008).
[19] T. Mukai, K. Takekawa, S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates”, Jpn. J. Appl. Phys., vol. 37, no. 7B, pp. L839-L841, (1998).
[20] E. Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev Lett. 58, 2059(1987).
[21] S. John,“Stromg localization of photons in certain disordered dielectric supperlattice,” Phys. Rev Lett. 58, 2486(1987).
[22] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, J. R. Wendt, J. A. Simmons, M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures” Appl. Phys. Lett., vol. 84, no. 19, pp. 3885-3887, (2004).
[23] H. W. Hung, F. I. Lai, J. K. Hung, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, H. C. Kuo, “Enhancement of light output power of GaN-based light-emitting diodes using a SiO2 nano-scale structure on a p-GaN suface ”Semicond. Sci. Technol. 25(2010) 065007 (4pp).
第二章
[1] 楊亞諭,“光致電化學氧化與壓印技術於氮化物發光二極體之研究”,國立成功大學光電科學與工程研究所, (2009).
[2] E. Fred Schubert “Light-Emitting Diodes ” second edition (2006).
[3] Donald A. Neamen 原著, 楊賜麟 譯, “半導體物理與元件”, 美商麥格爾.希爾國際股份有限公司, 台灣分公司, (2005).
[4] 陳盈宏,“用空隙陣列結合圖案化基板改善氮化鎵發光二極體之特性”,國立成功大學光電科學與工程研究所, (2010).
[5] 龔鈺茗, “表面處理對P型氮化鎵特性影響之研究暨非螢光粉式混色發光二極體元件之研製”, 國立台南大學電機工程學系光電工程碩士班,(2010).
[6] 張詠翕, “以聚焦離子束製程的AlGaN/GaN量子結構之研究”, 國立中山大學物理學系研究所, (2009).
[7] 杜尚儒, “透明導電膜沉積於矽基板之異質接面太陽能電池研究”, 南台科技大學光電工程研究所, (2008).
[8] 王士銘,“奈米球鏡微影術之研究與應用”,國立成功大學光電科學與工程研究所, (2010).
第三章
[1] 王士銘,“奈米球鏡微影術之研究與應用”,國立成功大學光電科學與工程研究所, (2010).
第四章
[1] B. Beaumont, M. Vaille, G.. Nataf, A. Bouille, J. C. Guillaume, P.
Vennegues, S. Haffouz and P. Gibart, “Mg-enhanced lateral overgrowth of GaN on patterned GaN/sapphire substrate by selective Metal Organic Vapor Phase Epitaxy”, MRS Internet J. Nitride Semicond. RES. vol. 3, no. 20, pp. 1-12, (1998).
[2] E. Trybus, O. Jani1, S. Burnham, I. Ferguson, C. Honsberg,
M. Steiner, and W. A. Doolittle, “ Characteristics of InGaN designed for photovoltaic applications”, Phys. Stal. Sol., vol. 5, no. 6, pp. 1843-1845, (2008).
[3] Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing”, Optical Express, vol. 18, no. 9, pp. 9398-9412, (2010).
第五章
[1] Michael Grätzel “Photoelectrochemical cells” ,NATURE , vol 414, pp, 338-344 (2001).