| 研究生: |
蔡俊緯 Tsai, Jiun-Wei |
|---|---|
| 論文名稱: |
土壤氣體採樣方法改良研究應用於管線偵漏 An Improved Method of Soil Gas Sampling for Pipeline Leak Detection:Laboratory Test and Breakthrough Time Analysis |
| 指導教授: |
郭明錦
Kuo, Ming-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 土壤氣體 、水平多孔隙管 、長途管線偵漏 |
| 外文關鍵詞: | Leak detection, pipeline, effective distance of detection |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所發展之串聯式水平多孔隙管偵漏系統,為一新型長途管線洩漏偵測土壤氣體技術。新型汙染物洩漏偵測系統為聚乙烯管等間距串聯連接橡膠多孔隙管,沿著地下管線或油料儲槽週圍進行鋪設。
傳統土壤氣體採樣影響範圍不大,通常只有3至5米。傳統土壤氣體採樣技術應用在長途管線偵漏時,通常需要挖掘大量的採樣孔抽取土壤氣體樣本進行分析。新型系統使用於長途輸油管線進行汙染物洩漏偵測時,有效檢測距離至少20米以上,可大量減少土壤氣體採樣分析樣本數量及採樣鑽頭消耗數量。以甲苯為例,應用土壤氣體揮發性有機物之突破時間(Breakthrough time)的時間可推算汙染源至偵測端之距離,找出洩漏源位置。
This paper presents the results of laboratory tests using an innovative leak-detection system for a long-distance pipeline utilizing soil-gas techniques. Based on the laboratory observations, the theory of breakthrough time to determine the leaking location for toluene. Because the effective detection radius from the conventional soil-gas probes is only around 5 meters, applying the new detection system to a long-distance pipeline for leak detection minimizes the large number of soil-gas samples and analyses which are required when conventional soil-gas probes are employed.
1.朱美玉,1995,揮發性有機物在未飽和層輸送現象之實驗研究,碩士論文,國立成功大學。
2.郭明錦,1999,水平多孔隙管測漏結構,中華民國專利第144063號。
3.郭明錦、梁康阜、范愷軍、韓吟龍、林立婷、朱秀鋒,2008,並聯式土壤氣體採樣方法,中華民國專利發明第I 294032號。
4.梁康阜,2003,水平多孔隙管在管線偵漏及未飽和層生物通氣法之研究與應用,碩士論文,國立成功大學。
5.Amyx, J.W., Bass D.M., Whiting R.L., 1960. Petroleum Reservoir Engineering. McGraw-Hill, Inc., New York.
6.Bird, R.B., Stewart W.E., Lightfoot E.N., 1960. Transport Phenomena. John Wiley & Sons, Inc., New York.
7.Cheng, W.C. and M.C.Tom Kuo, 2010. The Effect of Toluene-Substrate Concentration on Biological Clogging and Sloughing in Porous Media, Ground Water Monit. Rev., Vol. 30, no. 4: 73-80.
8.LB, Davidson, 1966. Theoretical analysis of reservoir behavior during the intermittent injection of steam
9.Han Y.L., M.C.Tom Kuo, I.C. Tseng and C.J. Lu, 2007. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene, Journal of Hazardous Materials, Vol. 148: 583-591.
10.Kerfoot, H.B. and C.L. Mayer, 1986. The use of industrial hygiene samplers for soil-gas surveying. Ground Water Monit. Rev., Vol. 6, no. 4: 74-78.
11.Kerfoot, H.B., C.L. Mayer, P.B. Durgin, and J.J. D’Lugosz, 1988. Measurement of carbon dioxide in soil gases for indication of subsurface. Ground Water Monit. Rev., Vol. 8, no. 2: 97-71.
12.Kuo, M.C.Tom, K.F. Liang, Y.L. Han and K.C. Fan, 2004. Pilot Studies for In-Situ Aerobic Cometabolism of Trichloroethylene Using Toluene-Vapor as the Primary Substrate, Water Research, Vol. 38: 4125-4134.
13.Liang, K.F. and M.C.Tom Kuo, 2006. A New Leak Detection System for Long-Distance Pipelines Utilizing Soil-Gas Techniques, Ground Water Monitoring& Remediation, Vol. 26, no. 3: 53-59.
14.Liang, K.F. and M.C.Tom Kuo, 2009. A model and experimental study for dissolution efficiency of gaseous substrates through in situ sparging, Journal of Hazardous Materials, Vol. 164: 204-214.
15.Lin, C.H., M.C.Tom Kuo, K.C. Fan and S.C. Yang, 2009. A pilot study for contact efficiency of gaseous and misty substrates through in-situ sparging, Journal of Chemical Technology & Biotechnology, Vol. 84, no. 10:1456-1460.
16.Lin, C.H., M.C.Tom Kuo, C.Y. Su, K.F. Liang and Y.L. Han, 2012. A nutrient injection scheme for in situ bio-remediation, Journal of Environmental Science and Health, Part A, Vol. 47, no. 2: pp. 280-288.
17.Liu, C.S., M.C.Tom Kuo, C.Y. Su, Y.C. Chen, W.C. Cheng, C.Y. Chou, K.F. Liang, Y.L. Han and C.H. Lin, 2013. A bacteria injection scheme for in situ bioaugmentation, Journal of Environmental Science and Health, Part A, Vol. 48, no. 9: 1079-1085.
18.Marrin, D.L., 1985. Delineation of gasoline hydrocarbons in groundwater by soil gas analysis. In Proceedings of the 1985 Hazardous Materials Management West Conference, Wheaton, Illinois.
19.Marrin, D.L., and G..M. Tompson, 1987. Gaseous behavior of TCE overlying a contaminated aquifer. Ground Water, Vol. 25, no. 1: 21- 27.
20.Marrin, D.L. and H.B. Kerfoot, 1988. Soil-gas surveying techniques. Environ. Sci. Technol., Vol. 22, no. 7: 740- 745.
21.Marrin, D.L., 1988. Soil-gas sampling and misinterpretation. Ground Water Monit. Rev., Vol. 8, no. 2: 51- 54.
22.Spittler, T.M., L. Fitch, and S. Clifford, 1985. A new method for detection of organic vapors in the vadose zone. In Proceedings of the Annual Symposium on Characterization and Monitoring of the Vadose Zone, National Water Well Association, Dublin, Ohio.
23.Swallow, J.A., and P.M. Gschwend, 1983. Volatilization of organic compounds from unconfined aquifers. In Proceedings of the 3rd National Symposium on Aquifer Restoration and Groundwater Monitoring, National Water Well Association, Dublin, Ohio.
24.Su, C.Y., M.C.Tom Kuo, K.F. Liang and C.Y. Lin, 2010. Model simulations for in situ aerobic cometabolism of trichloroethylene, Journal of Chemical Technology & Biotechnology, Vol. 85: 1604-1615.
25.Thompson, G..M., and D.L. Marrin, 1987. Soil gas contaminant investigations: a dynamic approach. Ground Water Monit. Rev., Vol. 7, no. 3: 88- 93.
26.Voorhees, K.J., J.C. Hickey and R.W. Klusman, 1984. Analysis of groundwater contamination by a new surface static trapping/mass spectrometry technique. Anal. Chem., Vol. 56: 2604- 2607.