簡易檢索 / 詳目顯示

研究生: 余効鴻
Yu, Hsiao-Hung
論文名稱: 吸附鐵、鈷、鎳的鍺烯豐富基本性質:第一原理計算
First-Principles Calculation of the Rich Basic Properties of Germanene for Adsorbing Iron, Cobalt, and Nickel
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 45
中文關鍵詞: 固態物理第一原理鍺烯過渡金屬鐵鎳吸附磁性
外文關鍵詞: solid state physics, first principles, germanene, transition metal iron, cobalt, nickel adsorption, magnetism
相關次數: 點閱:130下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因為石墨烯的獨特導電性,石墨烯的特性讓二維材料越來越吸引人,然而石墨烯為半金屬且自旋軌道耦合效應很小幾乎可以忽略,所以我們研究室開始研究同為第四族的矽烯和鍺烯,在理論計算得出矽烯和鍺烯可以由外加電場控制能隙,矽烯和鍺烯實驗製備和各式各樣的參雜的理論計算就越來越熱門且重要,二維材料的光學導電磁性等性質就足以引向下個世代的材料。本碩士論文主要以VASP作為計算工具,進行第一原理的詳細數值計算,模擬晶體的電子密度分佈,並研究其中的各種特性。
    主要研究為鍺烯吸附過渡金屬鐵、鈷、鎳,討論不同濃度和排列方式來吸附所造成的幾何結構電子特性電荷分佈態密度自旋分佈。鍺原子之間的化學鍵結強度小於鐵鈷鎳與鍺原子之間的鍵結強度,造成鍺烯參雜鐵鈷鎳時會有最高濃度的問題,鍺烯在受到過渡金屬d軌域自旋軌道耦合影響下會出現半導體及金屬及鐵磁性的自旋分佈。

    We mainly study the geometric structure, band structure, charge density, charge density difference, spin distribution, and density of states after the adsorption of iron, cobalt, and nickel germanene, and define chemical images from various physical quantities, from germanene and adsorption The bonding of atoms determines or judges how the chemical orbital mix determines the geometric structure.
    We use the Vienna Ab-initio Simulation Package (VASP) as our first-principles calculation tool, consider the spin-orbit interaction during our calculations, and precalculate the magnetic properties in our system.
    After our calculations, we found that there is a limit to the highest concentration of germanene adsorbing iron, cobalt, and nickel. After calculating at different positions, we found that placing adsorbed atoms in adjacent adsorption positions would destroy the structure of germanene. It can be seen from the spin distribution, magnetic moment, and energy band that the system is found to be ferromagnetic after iron and cobalt are adsorbed, but there is no magnetism in the nickel system.
    We found that there is the highest concentration after the adsorption of Fe, Co, and Ni. We have never found anyone mentioning this when reviewing the article on the same system. The adsorption of iron and cobalt at different concentrations shows multiple energy band properties.
    Keywords: solid state physics, first principles, germanene, transition metal iron、cobalt 、nickel adsorption, magnetism

    第一章 導論 1 第二章 計算方法 4 第三章 結果和討論 5 3.1 幾何結構 5 3.2 能帶 17 3.3 電荷密度和自旋分佈 22 3.4 態密度 32 第四章 結論 37 參考文獻 39

    [1] Liu. Q Ni. Z, et al., Tunable bandgap in silicene and germanene. Nano
    Lett 12 1, 113-118 (2012).
    [2] A. K. GEIM and K. S. NOVOSELOV, The rise of graphene.
    Nanoscience and Technology, 11-19 (2009).
    [3] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-
    Takamura, Experimental evidence for epitaxial silicene on diboride thin
    films. Phys Rev Lett 108 24, 245501 (2012).
    [4] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C.
    Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling
    experimental evidence for graphenelike two-dimensional silicon. Phys
    Rev Lett 108 15, 155501 (2012).
    [5] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H.
    Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111).
    Nano Lett 13 2, 685-690 (2013).
    [6] Noriaki Takagi, Chun-Liang Lin, Kazuaki Kawahara, Emi Minamitani,
    Noriyuki Tsukahara, Maki Kawai, and Ryuichi Arafune, Silicene on
    Ag(111): Geometric and electronic structures of a new honeycomb
    material of Si. Progress in Surface Science 90, 1-20 (2015).
    [7] L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du,
    and H. J. Gao, Buckled germanene formation on Pt(111). Adv Mater 26
    28, 4820-4824 (2014).
    [8] M. Derivaz, D. Dentel, R. Stephan, M. C. Hanf, A. Mehdaoui, P. Sonnet,
    and C. Pirri, Continuous germanene layer on Al(111). Nano Lett 15 4,
    2510-2516 (2015).
    [9] M. E. Davila and G. Le Lay, Few layer epitaxial germanene: a novel
    two-dimensional Dirac material. Sci Rep 6, 20714 (2016).
    [10] E. D. Cantero, L. M. Solis, Y. Tong, J. D. Fuhr, M. L. Martiarena, O.
    Grizzi, and E. A. Sanchez, Growth of germanium on Au(111): formation
    of germanene or intermixing of Au and Ge atoms? Phys Chem Chem
    Phys 19 28, 18580-18586 (2017).
    [11] F. d'Acapito, S. Torrengo, and et al, Evidence for Germanene growth on
    epitaxial hexagonal (h)-AlN on Ag(1 1 1). J Phys Condens Matter 28 4,
    045002 (2016).
    [12] A. K. Geim, Graphene: Status and Prospects. Science 324 5934,
    1530-1534 (2009).
    [13] X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M. S.
    Dresselhaus, Graphene edges: a review of their fabrication and
    characterization. Nanoscale 3 1, 86-95 (2011).
    [14] L. P. Biro, P. Nemes-Incze, and P. Lambin, Graphene: nanoscale
    processing and recent applications. Nanoscale 4 6, 1824-1839 (2012).
    [15] L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao,
    and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on
    silicon. Phys Rev Lett 109 5, 056804 (2012).
    [16] A. O'Hare, F. V. Kusmartsev, and K. I. Kugel, A stable "flat" form of
    two-dimensional crystals: could graphene, silicene, germanene be
    minigap semiconductors? Nano Lett 12 2, 1045-1052 (2012).
    [17] W. Hu, X. Wu, Z. Li, and J. Yang, Helium separation via porous silicene
    based ultimate membrane. Nanoscale 5 19, 9062-9066 (2013).
    [18] S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Twoand
    one-dimensional honeycomb structures of silicon and germanium.
    Phys Rev Lett 102 23, 236804 (2009).
    [19] C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and
    two-dimensional germanium. Phys Rev Lett 107 7, 076802 (2011).
    [20] Muhammad Ali, Xiaodong Pi, Yong Liu, and Deren Yang, Electronic and
    magnetic properties of graphene, silicene and germanene with varying
    vacancy concentration. AIP Advances 7 4 (2017).
    [21] C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene. Phys
    Rev Lett 95 22, 226801 (2005).
    [22] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang,
    Quantum Spin Hall Effect and Topological Phase Transition in HgTe
    Quantum Wells. Science 314 5806, 1757-1761 (2006).
    [23] Y. C. Huang, C. P. Chang, and M. F. Lin, Magnetic and quantum
    confinement effects on electronic and optical properties of graphene
    ribbons. Nanotechnology 18 49, 495401 (2007).
    [24] Cheng-Cheng Liu, Hua Jiang, and Yugui Yao, Low-energy effective
    Hamiltonian involving spin-orbit coupling in silicene and twodimensional
    germanium and tin. Physical Review B 84 19 (2011).
    [25] Thaneshwor P. Kaloni, Tuning the Structural, Electronic, and Magnetic
    Properties of Germanene by the Adsorption of 3d Transition Metal
    Atoms. The Journal of Physical Chemistry C 118 43, 25200-25208
    (2014).
    [26] Qing Pang, Long Li, Chun-Ling Zhang, Xiu-Mei Wei, and Yu-Ling
    Song, Structural, electronic and magnetic properties of 3 d transition
    metal atom adsorbed germanene: A first-principles study. Materials
    Chemistry and Physics 160, 96-104 (2015).
    [27] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow,
    New Class of Materials: Half-Metallic Ferromagnets. Physical Review
    Letters 50 25, 2024-2027 (1983).
    [28] Warren E. Pickett and Jagadeesh S. Moodera, Half Metallic Magnets.
    Physics Today 54 5, 39-44 (2001).
    [29] Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene
    nanoribbons. Nature 444 7117, 347-349 (2006).
    [30] E. J. Kan, H. J. Xiang, F. Wu, C. Tian, C. Lee, J. L. Yang, and M. H.
    Whangbo, Prediction for room-temperature half-metallic ferromagnetism
    in the half-fluorinated single layers of BN and ZnO. Applied Physics
    Letters 97 12 (2010).
    [31] Menghao Wu, Xiaojun Wu, Yong Pei, and Xiao Cheng Zeng, Inorganic
    nanoribbons with unpassivated zigzag edges: Half metallicity and edge
    reconstruction. Nano Research 4 2, 233-239 (2010).
    [32] Menghao Wu, Zhuhua Zhang, and Xiao Cheng Zeng, Charge-injection
    induced magnetism and half metallicity in single-layer hexagonal group
    III/V (BN, BP, AlN, AlP) systems. Applied Physics Letters 97 9 (2010).
    [33] Y. Ma, Y. Dai, M. Guo, C. Niu, L. Yu, and B. Huang, Strain-induced
    magnetic transitions in half-fluorinated single layers of BN, GaN and
    graphene. Nanoscale 3 5, 2301-2306 (2011).
    [34] X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe(3) exfoliated
    nanosheet with carrier doping. J Am Chem Soc 136 31, 11065-11069
    (2014).
    [35] T. Cao, Z. Li, and S. G. Louie, Tunable Magnetism and Half-Metallicity
    in Hole-Doped Monolayer GaSe. Phys Rev Lett 114 23, 236602 (2015).
    [36] Xingxing Li and Jinlong Yang, Low-dimensional half-metallic materials:
    theoretical simulations and design. Wiley Interdisciplinary Reviews:
    Computational Molecular Science 7 4 (2017).
    [37] Q. Wu, Y. Zhang, Q. Zhou, J. Wang, and X. C. Zeng, Transition-Metal
    Dihydride Monolayers: A New Family of Two-Dimensional
    Ferromagnetic Materials with Intrinsic Room-Temperature Half-
    Metallicity. J Phys Chem Lett 9 15, 4260-4266 (2018).
    [38] P. K. de Boer and R. A. de Groot, Electronic structure of the layered
    manganite LaSr2Mn2O7. Phys. Rev. B 60, 10758 – Published 10715
    (1999).
    [39] William C. Black and Bodhisattva Das, Programmable logic using giantmagnetoresistance and spin-dependent tunneling devices (invited). Journal of Applied Physics 87 9, 6674-6679 (2000).
    [40] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Physical Review 136 3B, B864-B871 (1964).
    [41] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 140 4A, A1133-A1138 (1965).
    [42] G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6, 1(15- 50) (1996).
    [43] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
    [44] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 – Published 1715 January (1999).
    [45] P. E. Blochl, Projector augmented-wave method. Phys Rev B Condens Matter 50 24, 17953-17979 (1994).
    [46] R. P. Feynman, Forces in Molecules. Physical Review 56 4, 340-343 (1939).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE