簡易檢索 / 詳目顯示

研究生: 林子淵
Lin, Tzu-Yuan
論文名稱: 可全光調控之垂直配向染料摻雜液晶於波導模態共振器之研究
All-optically controllable guided mode resonance in a dye-doped liquid crystal cell with homeotropic alignment
指導教授: 李佳榮
Lee, Chia-Rong
共同指導教授: 許佳振
Hsu, Chia-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 69
中文關鍵詞: 液晶偶氮染料光異構化波導模態共振濾波器
外文關鍵詞: liquid crystal, azo-dye, photoisomerization, guided-mode resonant filter
相關次數: 點閱:81下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首次製作並研究由奈米粒子誘導垂直配向之染料摻雜液晶結合可全光調控與偏振無關之二維次波長波導模態共振濾波器。實驗結果顯示波導模態的共振波長可藉由依次照射紫外光和綠光,使得共振波長可逆地先紅位移再藍位移,進一步達成全光式調控。此與偏振無關之波導模態共振濾波器的共振波長可全光調控性主要乃歸因於奈米粒子誘導垂直配向液晶盒內之偶氮染料受紫外光照射後行光同素異構化反應,而從棒狀trans態轉變到彎曲狀cis態,引致液晶等溫地由垂直基板排列之向列相(折射率no)轉變為各向同性之isotropic態(折射率ni);而之後照射綠光會使偶氮染料從cis態轉變回trans態的光同素異構化反應引致液晶等溫地從各向同性之isotropic狀態(折射率ni)逆轉變回垂直基板排列之向列相(折射率no)。此外,此可全光調控之共振濾波器尚有能夠重複性地多次來回調控且特性不會有所衰退。

    The current work develops and investigates for the first time a two-dimensional (2D) all-optically tunable and polarization-independent guided-mode resonant (GMR) filter. This filter is based on a 2D sub-wavelength nanostructure, which incorporates a dye-doped liquid-crystal (LC) layer with a nanoparticle-doping-induced homeotropic (H) alignment. Experimental results show that the resonant wavelength of the GMR filter can be all-optically tuned to red-shift and then to blue-shift if the cell is illuminated successively by one ultraviolet (UV) and green beam. The all-optical and polarization-independent tunability of the filter is attributable to the H →isotropic (I) and I→H phase transitions, resulting in the variations of the LC refractive index from no→ni and ni→no, via the UV-beam-induced trans-cis and green-beam-induced cis-trans back isomerizations, respectively. In addition, such a filter can be all-optically tuned repeatedly for many times without decay or damage.

    Chinese Abstract I English Abstract II Acknowledgements III Table of Contents V List of Figures VIII List of Tables XIV List of Acronyms/Abbreviations XV Chapter 1 Introduction 1 Chapter 2 Properties of Liquid Crystals 3 2.1 Liquid crystal phases 3 2.2 Classification of liquid crystals 3 2.3 Anisotropic physical properties of liquid crystals 8 2.4 Elastic continuum theory of liquid crystals 11 Chapter 3 Photosensitive and Non-contact Alignmnet Material1 3 3.1 Photochromism 13 3.1.1 Background 13 3.1.2 Photoisomerization of azobenzene derivatives 15 3.1.3 Dye-doped liquid crystals 17 3.2 Nanoparticle-induced vertical alignment of liquid crystal 17 3.2.1 Polyhedral oligomeric silsesquioxanes(POSS) 18 3.2.2 Characteristics and mechanism of alignment 19 Chapter 4 Resonant Anomaly in Guided-Mode Resonant Structures 21 4.1 Background 21 4.1.1 Diffraction theory of the gratings 22 4.1.2 Rigorous coupled-wave analysis (RCWA) method 26 4.1.3 Dielectric slab waveguide 26 4.1.4 Dielectric grating-waveguide structure 27 4.2 Principle of resonance anomaly in GMR 28 4.2.1 Resonance in 2D GMR 30 4.3 Multi-exposure of two-beam interference 33 4.3.1 Background of PhC 33 4.3.2 Principle of two-beam interference 34 Chapter 5 Sample preparation and experimental setup 37 5.1 Experimental procedure 37 5.2 Fabrication and observation of 2D square-lattice PhC template 38 5.2.1 Setup for multi-exposure two-beam interference technique 38 5.2.2 Materials and fabrication procedure 39 5.2.3 Configuration observation 41 5.3 Fabrication and observation of 2D square-lattice PhC template with a titanium dioxide (TiO2) film 42 5.3.1 Electron beam evaporation 42 5.3.2 Materials and fabrication 42 5.3.3 Configuration observation 43 5.4 Dye-doped liquid crystals 44 5.4.1 Materials and fabrication 44 5.5 Experimental setups for measurement 47 5.5.1 Resonant modes at normal incidence 47 5.5.2 All-optically tunable properties of GMR filter 48 5.5.3 Resonant modes at oblique incidence 49 Chapter 6 Results and discussion 50 6.1 Resonant modes at normal incidence 50 6.1.1 Measurement of GMR filter 50 6.2 All-optically tuning properties of NP-doped-DDLC-GMR filter 51 6.2.1 Examination of a NP-doped-DDLC-GMR filter using polarizing optical microscope 51 6.2.2 Measurement of polarizing absorption spectra 53 6.2.3 Static tuning and performance 54 6.2.4 Simulated results 55 6.2.5 Dynamic all-optical tenability of NP-doped-DDLC-GMR filter and its repeatability 56 6.3 Resonant modes at oblique incidence 60 6.3.1 Spectral measurement of GMR and NP-doped-DDLC-GMR filters 60 Chapter 7 Conclusion and prospection 66 7.1 Conclusion 66 7.2 Prospection 66 List of References 67

    1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
    2. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, New York, 1992).
    3. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York, 1995).
    4. Pochi Yeh, and Claire Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, New York, 1999).
    5. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).
    6. T. Ikeda and O. Tsutsumi,” Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science, 268, 1873-1875 (1995).
    7. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs), ”Annual Review of Materials Science,” 30, 83-115 (2000).
    8. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express, 11(20), 2589-2596 (2003).
    9. H. Bouas-Laurent and H. DÜRR, “Organic photochromism,” Pure Appl. Chem., 73(4), 639-665 (2001).
    10. Y. Hirshberg, “Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model,” J. Am. Chem. Soc., 78(10), 2304-2312 (1956).
    11. H. Kandori, Y. Shichida, and T. Yoshizawa,” Photoisomerization in Rhodopsin,” Biochemistry, 66(11), 1483-1498 (2001).
    12. H. Rau, ”Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, ed. F. J. Rabeck, CRC, Boca Raton, FL, 1990, Vol. 2, Ch.4, pp. 119-141.
    13. S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C Liao, ”Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
    14. Sigma-Aldrich Corp., St. Louis, MO, USA.
    15. S. J. Hwang, S. C. Jeng, C. Y. Yang, C. W. Kuo and C. C. Liao, ”Characteristics of nanoparticle-doped homeotropic liquid crystal devices,” J. Phys. D: Appl. Phys. 42(2), 025102 (2009).
    16. J. Cognard, ”Alignment of Nematic Liquid Crystals and Their Mixtures,” Mol. Cryst. Liq. Cryst. Suppl. Ser. 1, 1-75 (1982).
    17. R. W. Wood, “On remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag. 4, 396-402 (1902).
    18. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Roy. Soc. A 79, 399 (1907).
    19. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275-1297 (1965).
    20. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. opt. Soc. Am. A 7, 1470–1474 (1990).
    21. A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE PHOTONIC TECH L. 19(19), 1457 – 1459 (2007).
    22. F. Yang, G. Yen, G. Rasigade, Julio A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,“ Appl. Phys. Lett. 92(9), 091115 (2008)
    23. M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).
    24. S. Boonruang, M. G. Moharam, Two-dimensional guided mode resonant structures for spectral filtering applications, Ph. D dissertation (CREOL, Orlando, 2008).
    25. A. Papoulis, Systems and Transforms with applications in optics (McGraw-Hill, New York, 1968).
    26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. opt. Soc. Am. A 12, 1068-1076 (1995).
    27. M. G. Moharam and T. K. Gaylord, “Coupled-wave analysis of two-dimensional gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. SPIE 883, 8–11 (1986).
    28. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. opt. Soc. Am. A 14, 1592-1598 (1997).
    29. D. Marcuse, Theory of dielectric optical waveguides (Academic, New York, 1974).
    30. D. Rosenblatt, A. Sharon, and A. A. Friesem, ‘‘Resonant grating waveguide structures,’’ IEEE J. Quantum Electron. 33, 2038–2059 (1997).
    31. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45, 5740–5747 (2006).
    32. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two beam interference technique,” Opt. Express 13(23), 9605-9611 (2005).
    33. T. Katchalski, G. Levy-Yurista, A.A. Friesem, G. Martin, R. Hierle and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express. 13(12), 4645-4650 (2005).
    34. S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide- grating structures,” Opt. Express 17(2), 426-436 (2009).

    下載圖示 校內:2012-08-05公開
    校外:2012-08-05公開
    QR CODE