簡易檢索 / 詳目顯示

研究生: 郭世勳
kuo, shih-hsun
論文名稱: 離子佈植技術應用於氮化鎵系列光偵測器
Ion Implantation Technology Applied to GaN-based Photodetectors
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: 離子佈植氮化鎵光偵測器
外文關鍵詞: ion implantation, GaN, photodetectors
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的研究主要是藉由選擇性離子佈植的方式,改變佈植區材料表面的晶格常數,並搭配後續的氮化鎵選擇性再成長的方法來製做氮化鎵系列的紫外光光偵測器。選擇性矽離子佈植於n型氮化鎵模板(template),經由離子轟擊表面會使得其晶格散亂,使後續高溫氮化鎵優先再成長於非佈植的區域,因此可形成一選擇性成長的現象。
      傳統上,將氮化鎵材料成長在不導電的藍寶石基板上,因此在元件製作上需經過一道乾式蝕刻製程來定義出元件的主動區並有利於電極的製作;在本論文中,我們將選擇性離子佈植及選擇性再成長的技術應用於p-i-n紫外光光偵測器,如此一來可以節省一道乾式蝕刻的製程;我們分別量測順偏電流-電壓特性曲線(I-V curve)、暗電流(dark current)、照光光電流(photocurrent)及光響應值(responsivity),並與傳統進行乾式蝕刻的製程之氮化鎵系列p-i-n紫外光光偵測器作比較。
      在實驗結果方面,經由穿透式電子顯微鏡分析,在佈植區上方並無再成長的磊晶層,且經過電性以及光響應值等量測,發現利用此方法是可以製作出典型的p-i-n紫外光光偵測器,雖然在光響應值略小於傳統用乾式蝕刻製程的p-i-n紫外光光偵測器,但是都在可以比擬的範圍內。

    In this study, selective-area ion implantation and selective-area regrowth techniques were applied to the fabrication of GaN-based p-i-n UV photodetectors. The selective-area growth could be attributed to the initial nucleation of GaN on the implantation-free regions rather than on the Si-implanted regions. That is, the GaN growth rate on the implanted regions was markedly lower than that on the implantation-free regions. The discrepancy in the growth rate could be attributed to fact that GaN epitaxial layer was difficult to grow on the lattice-damaged layer caused by the high-dose implantation. In general, the crystal structure of GaN layer subjected to high doses and/or energy levels of ion bombardment produces a lattice-disordered layer.
    GaN-based p-i-n UV photodetectors are typically grown on sapphire substrate. The device fabrication needed a dry etching process to define the active region of device and expose underlying n+-GaN layer to contact metal for forming Ohmic contact. In this study, the self-assembled mesa due to selective-area regrowth on the Si-implanted GaN template could leave out the dry etching process, and the heavy Si-doping on the outside the mesa regions would be beneficial to the formation of n-electrode Ohmic contacts with low contact resistance. Compared with those of conventional GaN-based p-i-n UV photodetectors, which were fabricated using dry etching process to form active mesa regions, the preliminary results indicated that dark current and responsivity of the photodetectors with self-assembled mesa were comparable with the conventional devices.
    In the following paragraphs, results about material characterizations and device performances are discussed in detail to clarify whether the formation of self-assembled mesa on selective-area Si-implanted GaN template is a practical technique or not.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 第一章 緒論 1 1-1氮化鎵材料的研究背景 1 1-2氮化鎵系列紫外光光偵測器簡介 1 1-3研究動機及論文架構 4 參考文獻(第一章) 7 第二章 理論基礎 10 2-1 光偵測器運作原理 10 2-2 p-i-n光偵測器原理 10 2-2.1 暗電流的機制 10 2-2.2 p-i-n 光偵測器工作原理 13 2-3光偵測器之量子效率(Quantum efficiency)與吸收係數(Absorption coefficient) 15 2-4光偵測器之光響應值(Responsivity)與偵測率(Detectivity) 16 2-5離子佈植技術簡介 18 2-6 氮化鎵選擇性再成長理論介紹 20 參考文獻(第二章) 25 第三章 元件結構與製程 28 3-1 p-i-n光偵測器的試片結構 28 3-2 p-i-n光偵測器試片製程步驟 29 3-2.1 元件試片Reference p-i-n光偵測器製程步驟 29 3-2.2 元件試片Regrowth p-i-n光偵測器製程步驟 33 3-3 製程與量測機台簡介 38 第四章 結果與討論 43 4-1穿隧式電子顯微鏡觀察(Transmission Electron Microscope) 43 4-2 掃描式電子顯微鏡(Scanning Electron Microscope)與薄膜厚度輪廓測度儀(Aplha-step)觀察 44 4-3 元件試片TLM量測 45 4-4 順偏與逆偏電流-電壓曲線比較 46 4-5 電致發光頻譜分析 47 4-6 光暗電流比較分析 47 4-7光響應度比較 48 參考文獻(第四章) 65 第五章 結論及未來展望 66 5-1結論 66 5-2未來展望 66

    [1-1] E. Fred Schubert, “Light-emitting diodes” Second Edition, CAMBRIDGE, New York, p.410, 2006.
    [1-2] A. F. M. Anwar, Shangli Wu, and Richard T. Webster, “Temperature dependent transport properties in GaN, AlxGa1-xN, and InxGa1-xN semiconductors”, IEEE Transactions on Electron Devices, vol.48, no.3, pp.567-572, 2001.
    [1-3] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J.Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J.Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN heterojunction bipolar transistor”, MRS Internet Journal Nitride Semiconductor Research, vol.3, no.41, pp.1245-1248 1998.
    [1-4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M.S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Applied Physics Letters, vol.65, pp.1121-1123, 1994.
    [1-5] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Applied Physics Letter, vol.62, no.15, pp.1786-1787, 1993.
    [1-6] G. S. Nakamura, “InGaN-based violet laser diodes”, Semiconductor Science and Technology, vol.14, no.6, pp.R27-R40, 1999.
    [1-7] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Applied Physics Letter, vol.63, no.18, pp.2455-2456, 1993.
    [1-8] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame, and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Applied Physics Letters, vol. 60, no.23, pp.2917-2919 , 1992.
    [1-9] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications”, Semiconductor Science and Technology, vol.13, no.9, pp.1042-1046, 1998
    [1-10] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga) N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Applied Physics Letters, vol.75, no.2, p.247, 1999.
    [1-11] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M.Razeghi, “High quality visible-blind AlGan p–i–n photodiodes”, Applied Physics Letters, vol.74, no.8, pp.1171-1173, 1999.
    [1-12] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasinghame, and A. R. Bhattarai, “Schottky barrier photodetector based on Mg‐doped p‐type GaN films”, Applied Physics Letters, vol.63, no.18, pp.2455-2456, 1993.
    [1-13] I. K. Sou, M. C. W. Wu, T. Sun, K. S. Wong, and G. K. L. Wong, “Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors”, Applied Physics Letters, vol.78, no.13, pp.1811-1813, 2001.
    [1-14] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors”, Electron Letters, vol.36, no.18, pp.1581-1583, 2000.
    [1-15] A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J.-C. De Jaeger, Y. M. Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo, and J.-F. Hochedez, “193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors”, Applied Physics Letters, vol. 92, no.8, pp.053501-1~053501-3, 2008.
    [1-16] Meiyong Liao, Xi Wang, Tokuyuku Teraji, Satoshi Koizumi, and Yasuo Koide, “Light intensity dependence of photocurrent gain in single-crystal diamond detectors”, Physical Review B, vol.81, no.3 , pp.033304-1~033304-4, 2010.
    [1-17] Shang-Ju Tu, Ming-Lun Lee, Yu-Hsiang Yeh, Feng-Wen Huang, Po-Cheng Chen, Wei-Chih Lai, Chung-Wei Chen, Gou Chung Chi, and Jinn-Kong Sheu “Improved output power of InGaN LEDs by lateral overgrowth on Si-implanted n-GaN surface to form air gaps” , Journal of Quantum Electronics, vol.48, no.8, pp.1004-1009 , 2012.
    [1-18] M. C. Chen, J. K. Sheu, M. L. Lee, C. J. Tun, and G. C. Chi, "Improved performance of planar GaN-based p-i-n photodetectors with Mg implanted isolation ring", Applied Physics Letters, vol.89, no.18, pp.183509-1~183509-2, 2006.
    [2-1] Dieter K. Schroder, “Semiconductor material and device characterization”, A Wiley-Interscience Publication, chap. 3, 1998.
    [2-2] S. M. Sze, “semiconductor device physics and technology 2nd edition”, WILEY, chap.7-1, 2001.
    [2-3] D. A. Neamen, “半導體物理與元件(三版)”, 麥格羅希爾出版, chap.9.1, 2003.
    [2-4] 施敏, “半導體元件物理與製作技術”, 國立交通大學出版社,2002.
    [2-5] 劉宇軒,“錳摻雜於氮化鎵系列材料之光電特性研究與元件應用”,國立成功大學光電科學與工程研究所,碩士論文,2008.
    [2-6] 黃鋒文,“非極性氮化銦鎵/氮化鎵材料與元件光電特性之探討”, 國立成功大學光電科學與工程研究所, 碩士論文, 2008.
    [2-7] S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, “Evidence for tunneling in reverse-biased III-V photodetector diodes”, Applied Physics Letters, vol.36, no.7, pp.580-582, 1980.
    [2-8] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47 as photodiode with dark current limited by generation- recombination and tunneling”, Applied Physics Letters, vol.37, no.3, p.217, 1981.
    [2-9] Schubert F. Soares, “Photoconductive gain in a schottky barrier photodiode”, Japan Journal Applied Physics Letters, vol.31, no.2A, pp.210-, 1992.
    [2-10] S. M. Sze, “Semiconductor device physics and technology 2nd edition, WILEY”, p.314, 2001.
    [2-11] M. T. Robinson, and O. S. Oen, “The channeling of energetic atom in crystal lattices”, Applied Physics Letter, vol.2, no.2, pp.30-32, 1963.
    [2-12] R. A. Moline, “Ion-implanted phosphorous in silicon-profiles using C-V analysis”, Journal of Applied Physics, vol. 42, no.9, pp. 3553-3559, 1971
    [2-13] R. G. Wilson, “Channeling of 20–800‐keV arsenic ions in the (110) and the (100) direction of the silicon, and the roles of electronic and nuclear stopping”, Journal of Applied Physics, vol.52, no.6, pp.3985-3988, 1981
    [2-14] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Anisotropic epitaxial lateral growth in GaN selective area epitaxy”, Applied Physic Letters, vol.71, no.9, pp.1204-1206, 1997
    [2-15] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy”, Applied Physic Letters, vol.71, no.18, pp. 2638-2640, 1997
    [2-16] H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition”, Applied Physic Letters, vol.73, no.6, pp.747-749, 1998.
    [2-17] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by Hydride Vapor Phace Epitaxy”, Japanese Journal of Applied Physic part 2-Letters , vol.36, no.7B, pp.L899-L902, 1997.
    [2-18] A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density”, Applied Physic Letters, vol.71, no.16, pp. 2259-2261, 1997
    [2-19] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy”, Journal of Crystal Growth, vol.144, no.3-4, pp. 133-140, 1994
    [2-20] S. Tomiya, K. Funato, T. Asatsuma, T. Hino, S. Kijima, T. Asano, and M. Ikeda, “Dependence of crystallographic tilt and defect distribution on mask material in epitaxial lateral overgrown GaN layers”, Applied Physic Letters, vol.77, no.5, pp.636-638, 2000.
    [4-1] 張國華,“selective-area regrowth technique applied to GaN-based optoelectronic devices grown by metal organic vapor phase epitaxy”, 國立成功大學光電科學與工程研究所, 博士論文, 2010.
    [4-2] 杜尚儒, “ion implantation technology applied to light emitting didoes”, 國立成功大學光電科學與工程研究所, 博士論文, 2012.
    [4-3] LIAN Hai-Feng, “high deep-ultraviolet quantum efficiency GaN p–i–n photodetectors with thin p-GaN contact layer”, Chinese Physics Letters, vol.30, no.1, pp.017302-1~017302-3, 2013

    下載圖示 校內:2018-08-22公開
    校外:2018-08-22公開
    QR CODE